
Local Factor Models for Large-Scale Inductive Recommendation
Longqi Yang

Microsoft
Redmond, WA, USA

Longqi.Yang@microsoft.com

Tobias Schnabel
Microsoft

Redmond, WA, USA
toschnab@microsoft.com

Paul N. Bennett
Microsoft

Redmond, WA, USA
pauben@microsoft.com

Susan Dumais
Microsoft

Redmond, WA, USA
sdumais@microsoft.com

ABSTRACT

In many domains, user preferences are similar locally within like-
minded subgroups of users, but typically differ globally between
those subgroups. Local recommendation models were shown to
substantially improve top-K recommendation performance in such
settings. However, existing local models do not scale to large-scale
datasets with an increasing number of subgroups and do not sup-
port inductive recommendations for users not appearing in the
training set. Key reasons for this are that subgroup detection and
recommendation get implemented as separate steps in the model
or that local models are explicitly instantiated for each subgroup.
In this paper, we propose an End-to-end Local Factor Model (Elfm)
which overcomes these limitations by combining both steps and
incorporating local structures through an inductive bias. Our model
can be optimized end-to-end and supports incremental inference,
does not require a full separate model for each subgroup, and has
overall small memory and computational costs for incorporating lo-
cal structures. Empirical results show that our method substantially
improves recommendation performance on large-scale datasets
with millions of users and items with considerably smaller model
size. Our user study also shows that our approach produces coher-
ent item subgroups which could aid in the generation of explainable
recommendations.

KEYWORDS

Recommendation; local model; large-scale; end-to-end

ACM Reference Format:

Longqi Yang, Tobias Schnabel, Paul N. Bennett, and Susan Dumais. 2021.
Local Factor Models for Large-Scale Inductive Recommendation. In Fifteenth
ACM Conference on Recommender Systems (RecSys ’21), September 27-October
1, 2021, Amsterdam, Netherlands. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3460231.3474276

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8458-2/21/09. . . $15.00
https://doi.org/10.1145/3460231.3474276

1 INTRODUCTION

In many real-world settings, even though user preferences differ
globally across an entire population, preferences tend to be consis-
tent on a local level for users that are part of a certain subgroup. For
example, a senior high school student visits websites for reasons
that are likely different from those of a Psychology undergradu-
ate student. However, focusing on a certain subgroup – say the
one of senior high school students, we would expect to see large
similarities in behavior due to their similar curriculums. These sub-
groups of like-minded users naturally induce subgroups of items
that are likely to be consumed together, e.g., websites on SAT prepa-
ration. We will refer to these coupled subgroups of items and users
as co-clusters throughout this paper. Many of the recommenda-
tion algorithms developed to date, from nearest neighbor-based
approaches [8, 45] to matrix factorization [29, 44] to deep neural
networks [26, 47, 48, 59], do not explicitly model specific subgroup
structures and instead estimate a single global model. As a result,
these models can be limited in their expressivity of the behavior and
preferences of subgroups, especially of subgroups that are small in
size or whose consumption patterns substantially deviate from the
general population.

To address this problem, prior work developed local models for
recommendation [9, 14, 15, 33, 34, 40, 49, 53]. The core idea is to
train many models locally for subgroups of users and items to
complement a global model. A good local recommendation model
should also allow for a sufficiently fine-grained representation of
these subgroups to not only improve modeling but also support
high-fidelity user analysis and interpretability. However, key limita-
tions of existing local models face are (i) their lack of scalability to
large real-world datasets, (ii) their inability to support sufficiently
many subgroups and (iii) their inability to accommodate unseen
users and update existing user profiles efficiently, which is a sig-
nificant pain point for large-scale online platforms with new user
interactions happening in real time. For example, on the web-scale
dataset that we present in this paper, rGLSVD [15], a state-of-the-
art local recommendation model, requires over 1 billion parameters
to represent only 100 subgroups. Recently developed disentangled
models [40, 49] suffer from a similar problem and the number of
clusters that these methods can handle is less than 20. Existing
work [9, 14, 15, 33, 34, 53] explored various ways of improving com-
putational efficiency, but these typically rely on simplifications that
may degrade recommendation performance, such as precomputing

https://doi.org/10.1145/3460231.3474276
https://doi.org/10.1145/3460231.3474276
https://doi.org/10.1145/3460231.3474276

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Yang, Schnabel, Bennett, and Dumais

and keeping subgroup structures fixed, or assigning each user to
only one subgroup.

In this paper, we present End-to-end Local Factor Models (Elfm),
an approach for large-scale recommendation that can learn local
preference and behavior patterns in an end-to-end fashion and
can support efficient inductive learning and incremental inference.
Going beyond previous local models, we encode both subgroup
structures in the user and item space, i.e., co-clusters of users and
items.We encode this structure via an explicit inductive bias into the
model as opposed to prior work that trains a full-fledged model for
each local subgroup. This is achieved through a differentiable latent
co-clustering module serving as a middle layer between user-item
representations and supervision. The module learns to construct
and leverage overlapping and sparse user-item co-clusters without
adhoc rules and allows Elfm to capture multi-level patterns with a
single integrated and lightweight model.

We evaluate Elfm on three datasets of different sizes and density
levels. Our empirical results show that Elfm substantially improves
recommendation performance on very large and sparse datasets
across users with diverse activity levels, while maintaining compet-
itive performance on the ones with dense user-item interactions.
Furthermore, Elfm achieves these performance gains with only
0.5% to 2% of the size of existing local models. To explicitly test the
quality of the detected item subgroups, we conducted a novel user
study with crowd workers. The results confirm the coherence of
the subgroups, which can also potentially serve as a way inspecting
and controlling recommendations.

The main contributions of this paper are threefold:
• We present a generic mechanism for recommenders to lever-
age local consumption patterns with minimal overhead in
model complexity, making local modeling feasible for large-
scale inductive recommendation and incremental inference.

• We introduce a method for incorporating local patterns in a
cohesive and end-to-end fashion without adhoc simplifica-
tions. Both user and items are dynamically co-clustered into
overlapping subgroups during optimization.

• We conduct a user study and extensive offline experiments
to demonstrate our model significantly improves recommen-
dation performance across a diverse range of scenarios.

2 NOTATION AND TASKS

We assume that we are given a set of user-item interactionsM =

{(u, i)} where user u interacted with item i (e.g., click, visit, revisit,
etc.). Let U be the set of all users, and I be the set of all items.
While our model solves recommendation as a primary task, it does
so by simultaneously considering the auxiliary task of user-item
co-clustering.

Top-K inductive recommendation. Given the set of items
that user u interacted with in the past, Iu ⊆ I, the task of top-K
inductive recommendation is to first learn a function r that predicts
a users preferences on all items,

sui = r (Iu , i), ∀i ∈ {1, . . . , |I |} (1)

where sui ∈ R denotes user u’s preferences for item i , and then
find K items with the highest sui score. To support inductive rec-
ommendation, we design function r to share its parameters across

users so that it can readily serve unseen users, which is fundamen-
tally different from transductive models that instantiate explicit
user-specific embeddings hindering generalization.

User-item co-clustering. The goal of this auxiliary task is to
co-cluster all users and items into N overlapping co-clusters such
that each co-cluster can be optimized to learn patterns specific to a
subset of users and items. We denote user u’s and item i’s affinities
to co-cluster c as acu ∈ R+ and aci ∈ R+ respectively. The non-
negativity of both scores ensure that their absolute values directly
reflect tie strength. Under this soft assignment paradigm, any users
or items can belong to multiple co-clusters.

3 END-TO-END LOCAL FACTOR MODELS

The design of Elfm is based on the insight that user-item co-clusters
drive the dynamics of user-item interactions — a user is more likely
to interact with an item if they belong to a similar set of co-clusters.
From a modeling perspective, this means that we want to express
the preference function sui of a useru through her latent co-clusters.

Having co-clusters as part of the model enables Elfm to have
fine-grained subgroup structures, making it possible to leverage
patterns that are local to subsets of users and items. As shown in
Figure. 1a, Elfm consists of three main components: (1) an item
embedding representing each item i with a dedicated dense item
vector ei , (2) an itemset aggregator module that constructs user
representations by aggregating the representations of items that a
user interacted with in the past, and (3) a differentiable latent co-
clustering (DLCC) module that constructs and leverages user-item
co-clusters for predicting the final user preference vector su . All
components are fully differentiable and can be trained end-to-end.
The next sections discuss the details of the two core modules – the
itemset aggregator and DLCC modules.

3.1 Itemset aggregator

Given items that a user interacted with (Iu) and their represen-
tations (ei , i ∈ Iu), the itemset aggregator (Figure. 1b) employs a
co-cluster-conditional attention mechanism to construct user repre-
sentations from them. We employ an N -head dot-product attention
approach [46]

дcu =W
∑
i ∈Iu

softmax
(
h
⊺
c · ei
√
d

)
ei , (2)

where d denotes the dimensionality of item embeddings, and each
head hc builds a co-cluster-conditional user representation дcu , c =
1, ...,N by assigning higher weights to more predictive items. Com-
pared to a global attention mechanism, co-cluster-conditional atten-
tion allows predictive items to vary across co-clusters. In addition,
we add a scaling factor 1√

d
to address the potential vanishing gra-

dients problem [46], and a linear projection (W ∈ Rd×d) to align
the feature spaces of users and items.

Our itemset aggregator comes with a number of advantages com-
pared to having explicit user representations. Beyond eliminating
the need to fit such individual user representations, it consumes
constant memory with respect to the number of users because the
parameters of our itemset aggregator are shared across all users.
Hence, our model can be easily scaled to serve millions of users,
whereas traditional methods typically scale as O(|U|). Moreover,

Local Factor Models for Large-Scale Inductive Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Itemset aggregator

Differentiable Latent Co-Clustering (DLCC)

Item embedding

!! = #, %, &

'!" , ∀# ∈ 1, … , !

," , ,# , ,$

shared across all users

(a) The architecture of Elfm.

Co-cluster Conditional
Attention

Linear

!

"! "" "#

#$% , … , #$&

(b) The itemset aggregator.

!"# $ %#, ' = 1,… , +

ReLU ReLU

%, $ %#, ' = 1,… , +

Min-Sum Pooling

-",

(c) The Differentiable Latent Co-Clustering

(DLCC) module.

Figure 1: The architecture of Elfm and its key components. The itemset aggregator builds user profiles from item embeddings

and the Differentiable Latent Co-Clustering (DLCC) module models co-cluster memberships. (Iu : items that user u interacted

with, ei : embedding for item i, ec : embedding for co-cluster c, дcu : user u’s profiles, sui : user u’s preference score for item i).

the itemset aggregator allows Elfm to support inductive recom-
mendations since inferring дcu from scratch only takes two highly
parallelizable linear operations. We can further reduce the compu-
tational cost by caching a scalar Zc as

Zc =
∑
i ∈Iu

exp
(
h
⊺
c · ei
√
d

)
. (3)

and computed embeddings дcu . Whenever user u interacts with a
new item j, her representation дcu can be updated via

Z ′
c = Zc + exp

(
h
⊺
c · ej
√
d

)
дcu

′
=

1
Z ′
c

[
дcu · Zc +W · exp

(
h
⊺
c · ej
√
d

)
ej

] (4)

without recomputing representations for items i ∈ Iu (Z ′
c and

дcu
′ denote the updated values). The computational cost for such

updates remains constant and does not grow with the volume of
user history. This update step directly supports cases where users
intentionally alter their profiles (e.g., item removal).

3.2 Differentiable latent co-clustering

We represent co-clusters of users and items by modeling their affini-
ties [56] to N latent co-clusters (Figure. 1c). Specifically, we learn a
representation ec for each co-cluster c and compute affinity scores
acu and aci as

acu = max
(
дcu
⊺
· ec , 0

)
aci = max

(
e
⊺
i · ec , 0

) (5)

where we apply rectified linear units (ReLU) [42] to enforce non-
negativity of both scores, and share co-cluster representation ec
among all users and items address the potential concern of ReLU
blocking gradients. Compared to direct dot products, non-negative
scalars acu and aci allow us to directly read off the cluster mem-
berships without post processing. This is useful for a variety of

scenarios – for example, one can speed up candidate generation by
pruning items from co-clusters that users are not part of, or enable
users to steer recommendations through feedback on item clusters
(Section 5.2).

Based on acu and aci , we apply a lightweight min-sum pooling
operation to link user-item co-clusters scores and recommendations.
More specifically, we compute user u’s preference score towards
item i , sui , as

sui =
∑
c

min
(
acu ,a

c
i
)
. (6)

where the innermin (·, ·) calculates the amount of co-cluster overlap
between u and i in terms of c and can be viewed as a “soft AND”
operator that requires both the user and the item have high affinity
to a cluster. The outer sum then aggregates such overlaps across all
co-clusters. The above design allows us to isolate the contributions
that each co-cluster makes to su , while also being fully differentiable
to enable end-to-end optimization. As a result, each co-cluster can
capture local patterns within potentially overlapping groups of
users and items. The design of differentiable latent co-clustering
encodes our inductive bias that an interaction between a user and an
item is driven by their common memberships in latent subgroups.

3.3 Masking-based training loss

We use a softmax classification loss to train Elfm, following prior
literature [38] indicating that it is preferable over pointwise losses
in binary recommendation because it encourages better weight
assignments for top-K rankings. To be able to handle large item
vocabulary sizes, we do not compute the full softmax loss but rather
compute a sampled version in each step. In addition, we mask out
items that the user has already interacted with to prevent the model
from learning trivial relationships.

For the set of items Iu that user u interacted with, we randomly
hold out an item k ∈ Iu during training time and and feed ev-
erything else into the model to compute the representations and
scores. Given those, we compute the following loss on a sampled

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Yang, Schnabel, Bennett, and Dumais

set Isp of negative training examples similar in spirit to the sampled
softmax [30]. More formally, the per-user loss being minimized is

Lu (Isp,k) = −α log

(
suk∑

vi ∈Isp sui

)
︸ ︷︷ ︸

cross entropy

+ λ
∑
c

©­«acu +
∑
i ∈Isp

aci
ª®¬︸ ︷︷ ︸

L1 regularization

, (7)

where α is a smoothing term and λ controls the amount of regu-
larization, with higher values of λ increasing sparsity in the user
and item subgroups. To create the set of negative samples Isp, we
employ a masking mechanism to prevent trivial solutions (e.g., the
identity mapping). More specifically, we exclude items Iu that the
user has already interacted with:

Isp = Uniform-Sample (I \ Iu) ∪ {k}. (8)

In other words, we do not penalize the model for predictions it
makes on positive examples other than k . Also, since user interac-
tion data is known to be incomplete and uncertain [29], we use a
label smoothing term α to soften the targets in the cross entropy
term. To encourage compact co-cluster structures, we additionally
use L1 regularization on the sum of affinity scores across users and
items. Eventually, the per-user loss is averaged across a minibatch.

3.4 Model complexity

Method Memory Time
(Incremental inference)

Bpr (|U| + |I |)d |Iu | |I |d
WrMF (|U| + |I |)d |I |d
NeuMF (|U| + |I |)d |I |d
uCML (|U| + |I |)d |Iu | |I |d
rGLSVD (2|U| + N |I |)d |Iu | |I |d
Elfm (2N + |I |)d Nd

Table 1: Comparison of model complexity in Big O notation

demonstrating Elfm’s high memory and time efficiency.

We summarize the memory and time complexity (in Big O no-
tation) of Elfm in Table. 1 and compare them to traditional and
local recommendation model baselines (details discussed in Sec-
tion 4.3). Compared to existing local models (rGLSVD), Elfm con-
sumes substantially less memory (|I | ≪ N |I |), because our model
does not require a separate model for each subgroup. Moreover, our
model is generally smaller than traditional recommendation models
(N ≪ |U|), because it does not explicitly store user representations
(O (|U|d)) and cluster assignments (O ((|U| + |I |)N)). In addition,
Elfm is substantially faster for incrementally adding or removing
interaction records (O (1)). Altogether, Elfm is particularly suited
to leverage local patterns for recommendations at scale.

4 EXPERIMENTAL SETUP

We evaluate Elfm’s performance on the two different tasks of Sec-
tion 2 – the primary task top-K inductive recommendation and
the secondary task of user-item co-clustering. For each task, we
compare against the set of baselines that are most appropriate for
the task at hand.

Dataset |U| (users) |I | (items) # entries density

Web-35M 3,794,691 427,147 34,870,333 2.2 · 10−5
LastFM-17M 359,126 87,709 17,423,558 5.5 · 10−4
Movielens-10M 136,674 13,681 9,977,455 5.3 · 10−3

Table 2: Dataset statistics (density=# entries/|U||I|).

4.1 Datasets

We evaluate performance on three different datasets whose statis-
tics are summarized in Table. 2. These datasets vary in size, den-
sity, and distributions. The Web-35M dataset we collected is the
largest, sparsest, and most skewed among the three. LastFM-17M
and MovieLens-10M are widely used benchmarking datasets by
prior literature [16]. We argue that Web-35M is much more chal-
lenging than other existing large scale datasets (e.g., Netflix chal-
lenge [5] and Yahoo! music [1]) that have more non-zero entries,
because Web-35M covers over 10 to 20 times more users and items,
and the resulting interaction matrix is significantly sparser. Below
are the details of each dataset.

Web-35M. We collected a large-scale dataset on website revisi-
tation, which is shown to reflect people’s long-term information
needs [3]. Specifically, we collaborated with the Bing search engine
to gather website host visits from a large sample of pseudonymized
search logs. Over the period of a month, we tracked the websites
that were revisited by each user at least once and then treated revis-
itation as users’ implicit preference, i.e., the number of revisitations
was not used. We included hosts that were revisited by at least ten
users but were not in the top 30 of the most popular hosts to filter
out trivial websites. We also only kept users who had visited at
least ten different hosts. Due to the diverse and distributed nature
of the web, the resulting Web-35M dataset is extremely sparse.

LastFM-17M. We leveraged the LastFM dataset [11] that records
the number of times that 360K listeners play music from artists. We
treat non-zero plays as positive feedback and filter users and items
based on the criteria adopted for Web-35M with the exception of
keeping popular items.

MovieLens-10M. This is derived fromMovieLens-20M [24], the
largest dataset available from MovieLens platform. We converted
the original movie ratings to implicit feedback by treating those
greater than or equal to four as positives, following prior litera-
ture [28, 44]. After applying the same filters used in LastFM-17M,
the resulting MovieLens-10M is significantly richer and denser
(more than 200 times than Web-35M).

4.2 Evaluation metrics

4.2.1 Top-K inductive recommendation. To evaluatemodels’ recom-
mendation performance in inductive settings using offline datasets,
we hold out a set of users and their entire interaction history

from each dataset for validation and testing (10K users each for
Web-35M, and 10% users each for LastFM-17M andMovieLens-10M).
Such a split guarantees that users in the validation and testing sets
are not seen during training and is sometimes referred to as strong
generalization [41]. For hold-one-out evaluation, the most recent
interaction from each user was held out for prediction and the
rest were used as inputs. Since timestamps are not available in the

Local Factor Models for Large-Scale Inductive Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

LastFM-17M dataset, a random interaction was chosen. We choose
the best performing model on the validation set, and report per-
formance of the chosen model on the test set in terms of Mean
Reciprocal Rank (MRR) and Hit Ratio@50 (HR@50) [26].

4.2.2 User-item co-clustering. In addition to explaining user be-
havior well, a good local recommendation model should group a
coherent set of items inside each user-item co-cluster, i.e., related or
similar. We follow the intrusion task proposed by Chang et al. [12]
to measure coherence via human judgements. Given a set of three
items from an item subgroup and a random intruder, people are
asked to identify the item that does not belong with the others.
Success on this task measures coherence in item subgroups be-
cause if subgroups are indeed coherent, it should be easy to spot
the intruder as the one item not belonging, but challenging oth-
erwise. We focus on the Web-35M dataset for human evaluation
since crowd-workers are unlikely to be able to fully judge movies
or songs without substantial training. Figure 2 shows one example
task with the intruder being the second item from the top.

We randomly sampled 100 item subgroups from each model,
ranked items in descending order of their membership scores (aci)
and then chose the items at position 1, 10, and 20 to form the
set of three subgroup items. For the intruder, we chose a random
intruder that did not appear in the subgroup but possessed a similar
popularity as the three subgroup items to control for popularity
bias (i.e., picked it within a small range of the average popularity
of the subgroup items). Each subgroup was labeled by five different
workers. We report overall precision [12] for each method, where
we first compute the mean precision for each item subgroup as the
percentage of workers that correctly identified the intruder, and
then average those across all 100 subgroups.

This user study was reviewed and approved by Microsoft’s Insti-
tutional Review Board (IRB). All participants gave explicit consent,
and the data was kept fully anonymous and was only available to
select researchers.

4.3 Baselines

For the top-K inductive recommendation task, we considered the
following baselines:

• Popularity is a non-personalized baseline that ranks items
based on the number of interactions they received in the
training set. The comparison to Popularity tells us how
much a personalized model is able to improve recommenda-
tion performance.

• UserKNN [8, 16]. Well-tuned nearest-neighbor-based rec-
ommenders deliver competitive performance compared to
recent deep learning based models [16], especially on dense
datasets. We implemented a user-based k-nearest-neighbor
recommender by first applying Truncated SVD [23] on bi-
nary user-item interaction matrix to derive user represen-
tations that enable fast nearest neighbor search. We then
compute users’ preference scores as

sui =
∑

u′∈KNN(u)

|Iu ∩ Iu′ |

|I |
1 (i ∈ Iu′) . (9)

• Bayesian personalized ranking (Bpr) [44] is a classical
pairwise ranking model that learns a dedicated representa-
tion for each user and each item by minimizing a logarithmic
sigmoid loss. This is a state-of-the-art of pairwise matrix fac-
torization method [25].

• Weighted regularizedmatrix factorization (WrMF) [29]
adds a smoothing term to address varied confidence levels as-
sociated with users’ implicit feedback. It has been a standard
MF baseline in the literature.

• Neural Collaborative Filtering (NeuMF) [26] is a cur-
rent recommendation framework based on a multi-layer
feed-forward network. It combines the flexibility of neural
networks with a traditional MF objective to improve its ex-
pressiveness. We choose the GMF architecture as in previous
work [26] to make it computationally feasible for strong
generalization-based evaluation.

• uniformCollaborativeMetric Learning (uCML) [28, 50]
is a variant of CML [28] with uniformly sampled training
triplets. Since uCML embeds users and items into a joint
Euclidean distance space, it can be considered as a baseline
that naively co-clusters users and items and serves as a con-
ceptually similar baselines to evaluate the added benefits
that are due to Elfm’s special architecture.

• Global and Local Singular Value Decomposition with

varying ranks (rGLSVD) [15] is the state-of-the-art lo-
cal recommendation model that outperforms all prior ap-
proaches of its kind [15]. rGLSVD combines a global trun-
cated SVD model with a dedicated local model for each clus-
ter. rGLSVD only groups users, and each user is only as-
signed to one cluster beforehand using K-means.

Other related but inapplicable methods for our problem include:
(1) methods that rely on extra information beyond user-item inter-
actions, e.g., sequential models [31, 52] and graph convolutional
neural networks [22] requiring explicit user and item features; (2)
methods that cannot support inductive recommendations, e.g., fine-
tuning or retraining very deep neural networks [20, 47–49] in real
time. Nevertheless, the baselines we choose (e.g., NeuMF, WRMF,
UserKNN) have been shown to achieve competitive and sometimes
even better performance [16].

For item coherence, we considered the following baselines:

• X-Clustering. This method takes a straight-forward ap-
proach to detect user-item co-clusters by first using an ex-
isting recommendation algorithm X and then clustering the
learned user and item embeddings [9]. These representations
are learned by deep neural networks or latent matrix factor-
ization. Ideally, one would apply soft clustering (e.g., fuzzy
c-means [35]) – however, soft methods need to store clus-
ter assignments for all user and items, which is intractable
on large datasets. To mitigate this problem, we instead use
k-means to first find cluster centers and then soft-assign
entities based on corresponding Euclidean distances. We use
this method in combination with Bpr, WrMF and NeuMF
as these produced best results on the recommendation task.
rGLSVD is not evaluated here as it does not cluster items,
and there is no canonical representations of items.

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Yang, Schnabel, Bennett, and Dumais

Figure 2: Intrusion task used to measure item coherency within user-item co-clusters. People had to identify the intruder

(here: the second item from the top) in a set of four items.

• Cluster AffiliationModel for Big Networks (BigClam)

is a state-of-the-art algorithm for overlapping community
detection at scale [56]. We represent user-item interactions
as links in an undirected graph. One inherent limitation
of BigClam is that it cannot conduct recommendations or
provide user clusters.

We also tried traditional latent topic modeling methods [7] to
discover co-clusters, but it fails to capture the correlations from the
extremely sparse datasets, and the performance is not comparable
to any of the baselines above.

4.4 Implementation details

We trained all models for 150 epochs using Adam [32] with a learn-
ing rate of 0.001 and early stopping [10]. That is, the optimal num-
ber of training iterations was selected through a validation set. To
control for expressive power, we varied dimensionality parameter
d = {16, 32, 64} for embeddings in Elfm and baselines.

For Elfm, we sampled 1000 negative items for each minibatch
with size 1024 and divided the learning rate by 10 for every 50
epochs. The hyperparameters we considered for model selection
were as follows: α ∈ {0.1, 0.05}, λ ∈ {1e−6, 1e−4}, N = {512,
1024, 2048}.We implemented Elfm using Tensorflow [2] and trained
it on four NVIDIA Tesla P100 GPU cards, taking less than two days
to finish.

We implemented baseline models including Bpr, WrMF, NeuMF,
and uCML using the OpenRec library [57] and experimented mod-
els with different levels of L2 regularization (0, 1e−6, 1e−5, 1e−4).
During inference, we froze all model parameters except user em-
beddings and fine-tuned them for 150 epochs using validation or
testing datasets. We implemented rGLSVD using Scikit-learn [43]
and followed the original paper [15] to allow the dimensionality
of local models to vary. Due to memory constraints, we fixed the

number of user clusters for rGLSVD to be 100 which is also the
largest size reported by the original paper [15].

For X -clustering, we used MiniBatchKMeans in Scikit-learn [43]
to jointly group users and items into 2048 clusters. We ran KMeans
three times and picked best results according to inertia. For Big-
Clam, the original implementation and recommended parameter
settings [56] were adopted to detect 2048 communities.

5 RESULTS AND DISCUSSION

We now present and discuss the results of our empirical evaluation,
starting with recommendation performance.

5.1 Top-K inductive recommendation

We present the results for the top-K inductive recommendation
task in Table 3. Under both metrics, Elfm substantially outperforms
all baselines on Web-35M and LastFM-17M with the gains becom-
ing larger as the interaction signals become sparser (cf. Table 2).
Moreover, Elfm achieves this boost while requiring only constant
time per user during inference, whereas other baselines are much
slower. On the MovieLens dataset, Elfm outperforms all baselines
in terms of HR@50 and performs competitively with rGLSVD. The
marginal gain on MovieLens dataset is in line with findings in
recent work [16] showing that advanced methods such as neural
architectures may not improve performance on dense datasets due
to overfitting.

5.1.1 Tradeoff between performance and model size. We show the
performance of Elfm and baseline methods under different model
sizes in Figure. 3. For all methods, larger models generally result
in better performance. However, prior local models (rGLSVD) are
orders of magnitudes larger without significant performance gain.
In fact, on LastFM-17M, local models perform even worse than
non-local solutions, and they can not serve on Web-35M due to out
of memory errors. In contrast, Elfm achieves significantly better

Local Factor Models for Large-Scale Inductive Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Model Web-35M LastFM-17M MovieLens-10M

MRR HR@50 MRR HR@50 MRR HR@50

Popularity 0.0162 0.1570 0.0312 0.1763 0.0247 0.1993
UserKNN 0.0510 0.1626 0.0844 0.3373 0.0483 0.2897
Bpr 0.0567 0.2479 0.0871 0.3758 0.0491 0.3054
WrMF 0.0654 0.2965 0.0885 0.3745 0.0489 0.2915
NeuMF 0.0800 0.3138 0.0714 0.3562 0.0420 0.2982
uCML 0.0195 0.1216 0.0760 0.3470 0.0466 0.2852
rGLSVD OOM OOM 0.0843 0.3357 0.0521 0.3020
Elfm (Ours) 0.0878*** 0.3308*** 0.1002*** 0.4020*** 0.0505 0.3118

Table 3: Top-K inductive recommendation performance. The best result of each column is in bold. The second best result is

underlined. Elfmperformed substantially better onWeb-35MandLastFM-17Mand competitively onMovieLens-10M. rGLSVD

runs out of memory (OOM) onWeb-35M dataset. Asterisks denote the statistical significance (paired t-test) of the best method

comparing to the second best (***: P < 0.001).

(a) Web-35M (MRR) (b) Web-35M (HR@50) (c) LastFM-17M (MRR) (d) LastFM-17M (HR@50)

(e) MovieLens-10M (MRR) (f) MovieLens-10M (HR@50)

Figure 3: Top-K inductive recommendation performance of models with varied sizes. For latent factor-based models (Bpr,

WrMF, NeuMF, and uCML), we report the best performance under each model size (orange lines) . On all three datasets, Elfm

achieves significantly better or competitive performance with substantially fewer model parameters (OOM: Out Of Memory).

or similar performance with much fewer parameters — Elfm’s size
is only < 10% (MovieLens-10M), < 1% (LastFM-17M), and < 0.1%
(Web-35M) of the size of rGLSVD.

5.1.2 The effect of the number of co-clusters. As shown in Figure. 4,
we can boost Elfm’s performance by increasing the number of co-
clusters for the model to leverage. The number of clusters that Elfm
can handle is at least 20 times more than that rGLSVD can address
on million-scale datasets, and this allows Elfm to capture much
more fine-grained local patterns for recommendations. However,
we were not able to go beyond N = 2048 in our experiments with
the described hardware andwill pursue alternative implementations
in future work.

5.2 User-item co-clustering

Elfm’s outstanding recommendation performance demonstrates
that fine-grained local patterns are highly useful for recommenda-
tion. We additionally investigate the effectiveness of local models
by evaluating the coherence of the induced item subgroups through
an intrusion task.

5.2.1 Item coherence. As the human evaluation results in Figure 5
show, Elfm and WrMF are the two top-performing methods with
respect to precision, indicating that they produce the most coherent
item subgroups among all methods. Last comes NeuMF where
human performance was only marginally better than picking items
at random, suggesting that NeuMF does not produce semantically

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Yang, Schnabel, Bennett, and Dumais

(a) Web-35M (MRR) (b) Web-35M (HR@50) (c) LastFM-17M (MRR) (d) LastFM-17M (HR@50)

(e) Movielens-10M (MRR) (f) Movielens-10M (HR@50)

Figure 4: Top-K inductive recommendation performance of Elfm with different number of co-clusters (N). Elfm improves

with larger N .

Item Subgroup Bpr-Clustering NeuMF-Clustering WrMF-Clustering Elfm

1

www.thesafarination.com
www.eliteautoraleigh.com
migration.kentucky.gov

hairmax.com
onthegoinmco.com

e-taxes.gov.az
my.zunos.com
insite.agoc.com
c2healthcare.com

www.netminder.com

www.personnel.alabama.gov
www.rsa-al.gov

www.yourasecu.com
dhr.alabama.gov
www.mymax.com

studentaid.ed.gov
studentloans.gov

fafsa.ed.gov
myfedloan.org

www.greatschools.org

2

www.eliteautoraleigh.com
www.theenclavegainesville.com

www.thesafarination.com
playnet.fun

waterlandlife.org

e-taxes.gov.az
www.insideepic.com

help.miami.edu
[removed]

my.icomtech.io

www.bwwb.org
www.alabamaone.org
www.alfainsurance.com
www.avadiancu.com
www.mymax.com

usaa.versaic.com
www.navyfederal.org
my.navyfederal.org
www.usaa.com

www.shopmyexchange.com

3

playnet.fun
www.thesafarination.com
www.eliteautoraleigh.com

waterlandlife.org
onthegoinmco.com

e-taxes.gov.az
laredo-cc.instructure.com

elmis.co.tz
[removed]

my.icomtech.io

www.valdosta.edu
www.gmc.edu

www.westga.edu
www.clayton.edu

www.westgatech.edu

pearsonmylabandmastering.com
www.ratemyprofessors.com

fafsa.ed.gov
www.citationmachine.net

www.chegg.com
Table 4: Item subgroups predicted for a randomly selected user. Each cell lists the top five hosts in that subgroup. Elfm’s

predictions are the most coherent within and distinct between subgroups. Some sites marked [removed] were not included in

the publication as they were deemed as potentially questionable sites.

meaningful item representations. In between are the performances
of Bpr and BigClam with only a small, statistically insignificant
difference. Note that always randomly choosing an item would
result in a precision of 0.25 (25%), as there were four items in total.

5.2.2 Quantity and quality of co-clusters. Even through WrMF-
Clustering is good at discovering coherent item subgroups, it falls
short in generating appropriate co-clusters, i.e., coupled subgroups
of items and users.We define a non-degenerate co-cluster as onewith
at least 20 users and 20 items respectively. Considering the number
of non-degenerate co-clusters shown in parentheses above each

bar in Figure. 5, WrMF-clustering only yields 435 non-degenerate
co-clusters – a third of what Elfm yields. The higher number of
non-degenerate co-clusters from Elfm compared to WrMF can be
seen as identifying many more fine-grained local co-clusters while
maintaining similar precision. This more fine-grained co-clustering
can be seen as a manifestation of local models’ benefits.

In general, X -clustering-based approaches are limited because
distances between user and item embeddings may be undefined
for Bpr, WrMF, and NeuMF, as is discussed in prior work [28].
Although not presented here, we found in pilot experiments where

Local Factor Models for Large-Scale Inductive Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

BPR-
Clustering

WRMF-
Clustering

NeuMF-
Clustering

BigClam ELFM (ours)

method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ea

n
pr

ec
is

io
n (1176)

(435)

(1471)

(2048)

(1444)

Figure 5: Average precision in intrusion task. Error bars

indicate 95% confidence intervals. The number of non-

degenerate co-clusters that a method produced is in paren-

theses. Elfm produces coherent item subgroups under a

high number of non-degenerate co-clusters.

we tried using the clusters discovered by X -Clustering for rec-
ommendations that performance dropped substantially. Moreover,
even for algorithms that directly learn distances between users and
items such as uCML, its performance degrades dramatically for
sparse interaction signals (shown in Table. 3), because the triangle
inequality [28] poses a strong prior impeding the model to learn
embeddings that have a multimodal distribution.

The inability of X -Clustering based methods to produce good
co-clusters of users and items can also be seen in the qualitative
example for a randomly sampled user in Table. 4. The rows cor-
respond to the user’s likeliest item subgroups and each cell lists
the top 5 most associated items with that subgroup. This example
highlights two things. First, the item subgroups from Elfm and
WrMF are much more coherent than those from Bpr and NeuMF
which is in line with the human results. Moreover, WrMF fails to
create sets of diverse and distinct item subgroups as the first two
subgroups have strong topical overlap. In contrast, Elfm is able to
capture local aspects of user’s preferences – namely interests in
web pages related to student loans or colleges, banking, and college
classes.

6 RELATEDWORK

Our work is primarily built upon and contributes to local models
for recommendations, and is additionally inspired by research in
community detection and co-clustering.

6.1 Local recommendation models

Collaborative filtering has been the prevailing paradigm used in
modern recommendation algorithms. The core idea is to mine cor-
relations between users and the items they consume. Common
approaches include nearest neighbor-based methods (e.g., user-
based [8] or item-based [45]), matrix factorization (e.g., WRMF [29]
and BPR [44]), and deep neural networks (e.g., CDL [47], NeuMF [26],
PinSage [59], and NGCF [48]). However, these algorithms are de-
signed to mainly capture common consumption patterns mani-
fested in the entire population through a global model. Unsurpris-
ingly, these patterns can be limited or ineffective when applied
to local clusters of users or items. For example, prior work has

suggested that underrepresented users [21, 58] and items in niche
categories [6] are insufficiently modeled and served.

To address this limitation, prior work developed local recom-
mendation models [9, 14, 15, 33, 34, 53] to learn and leverage
fine-grained patterns within subsets of users and items. These lo-
cal models usually follow a three-step recipe — first they clus-
ter users or items (through anchor points [33, 34] or K-means
alike [9, 14, 15, 53]), then they train a fully-fledged model on each
cluster, and finally combine local and global models for predic-
tion. For example, Lee et al. [33, 34] developed a local collaborative
ranking model (LCR) that groups users and items according an-
chor points, learns a low-rank model around each neighborhood,
and computes weighted combinations as recommendations. The
rGLSVD model developed by Christakopoulou et al. [14, 15] uses a
similar procedure except that it directly clusters users and allows
ranks of local models to vary. Methods like this suffer from two
key limitations that create scalability issues in larger datasets. First,
model sizes quickly become intractable as the number of clusters
that one wants to model increases, because a full model is needed
for each cluster. Second, models often have to be greatly simplified,
because the required iterative optimization is limited in its ability
to effectively search for optimal parameters. Commonly adopted
simplifications include limiting the number of clusters that a user or
item can belong to (often set to one [14, 15]), precomputing and fix-
ing cluster assignments [33, 34], etc. Recent work on disentangled
models [40, 49] share these limitations as these explicitly instantiate
user and item embeddings for every intent [49] or prototype [40],
and can only model disjoint user or item clusters.

In this paper, we address these two limitations of local recommen-
dation models by proposing an end-to-end paradigm that encodes
local information as an inductive bias into the model. Via our ap-
proach, the additional memory overhead is significantly reduced
and the model is able to scale to millions of users and items. Also,
soft assignment mechanism we employ eliminates the need for any
adhoc simplifications — users and items are dynamically assigned
to co-clusters that can overlap with each other.

6.2 Community detection and co-clustering

Clustering users and items is related to community detection, a
widely studied topic in the context of networks and graphs. Existing
approaches include factorization [55, 56], deep learning [13, 39],
label propagation [54], and spectral methods [36, 37]. Many existing
algorithms are not directly applicable to discover user-item co-
clusters because they can not handle overlapping communities
or are not scalable to million-scale datasets. Most relevant to our
problem setting is BigClam [56] which we also compare against
in this paper. Through our human evaluation, we find that Elfm
finds item clusters that are significantly more coherent than those
from BigClam. This may be due to the fact that BigClam does not
sufficiently leverage the bipartite structure of user interaction data.

The user-item consumption matrix can also be viewed as a
bipartite graph with edges between users and items indicating
whether or not an item was consumed. This transformation allows
co-clustering methods to be applied to the problem. Prior literature
has developed a rich set of methods for diverse problem settings,

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Yang, Schnabel, Bennett, and Dumais

such as overlapping co-clustering [51], theoretically grounded co-
clustering [4, 19], and co-clustering over noisy data [18]. Topic
modeling methods [7, 17, 27] can also be applied for co-clustering
by casting items to “words”, users to “documents”, and co-clusters
to “topics”. However, most of the existing co-clustering methods
can only operate on medium-sized data (at most thousands of rows
or columns), rendering them impractical for large-scale problems.

In contrast to Elfm, community detection and co-clustering
methods are not designed with recommendation as a primary task
and thus provide no native interface for it. Existing unsupervised
co-clustering methods seek to optimize certain geometry-based
objectives, whereas ours train co-clusters in a supervised manner.
The co-clusters are considered good if they perform well for the rec-
ommendation task (i.e., optimize the sampled loss) and form sparse
clusters (i.e., optimize the regularization term) that also make sense
to users (tested in our evaluation). As we show in our evaluation, the
above methods result in suboptimal recommendation performance
as well as suboptimal user-item co-clusters.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we proposed Elfm, an End-to-end Local Factor model
that leverages local consumption patterns through inductive bias
for recommendations at scale. Beyond the strong empirical results
demonstrating Elfm’s superior recommendation performance and
the coherence of the induced item clusters, it is computationally
and memory efficient, and thus addresses a critical pain point of
existing local models. Elfm also opens up many exciting application
areas – for example using user-item co-clusters for explanations,
direct preference elicitation at the co-cluster level, or detection of
information silos in co-clusters (information known broadly in a
co-cluster but limited knowledge elsewhere). Since Elfm does not
directly handle cold-start recommendations for new users future
work could leverage richer user profile signals to handle such cases.
Other interesting avenues are extending the framework to capture
temporal effects to detect trending items or determine experts or
influential users, and incorporating auxiliary information (e.g., text,
images, and meta-data) to enrich item representations.

REFERENCES

[1] 2006. Yahoo! Webscope dataset ydata-ymusic-rating-study-v1. http://research.
yahoo.com/Academic_Relations

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In USENIX Sympo-
sium on Operating Systems Design and Implementation.

[3] Eytan Adar, Jaime Teevan, and Susan T Dumais. 2008. Large scale analysis of
web revisitation patterns. In SIGCHI conference on Human Factors in Computing
Systems.

[4] Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana Merugu, and Dhar-
mendra S Modha. 2007. A generalized maximum entropy approach to bregman
co-clustering and matrix approximation. Journal of Machine Learning Research
(2007).

[5] James Bennett, Stan Lanning, et al. 2007. The netflix prize. In Proceedings of KDD
Cup and Workshop. Citeseer.

[6] Alex Beutel, Ed H Chi, Zhiyuan Cheng, Hubert Pham, and John Anderson. 2017.
Beyond globally optimal: Focused learning for improved recommendations. In
International Conference on World Wide Web.

[7] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research (2003).

[8] John S Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of
predictive algorithms for collaborative filtering. In Conference on Uncertainty in
Artificial Intelligence.

[9] Jiajun Bu, Xin Shen, Bin Xu, Chun Chen, Xiaofei He, and Deng Cai. 2016. Improv-
ing collaborative recommendation via user-item subgroups. IEEE Transactions
on Knowledge and Data Engineering (2016).

[10] Rich Caruana, Steve Lawrence, and C Lee Giles. 2001. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Advances in Neural
Information Processing Systems.

[11] O. Celma. 2010. Music Recommendation and Discovery in the Long Tail. Springer.
[12] Jonathan Chang, Sean Gerrish, ChongWang, Jordan L Boyd-Graber, and David M

Blei. 2009. Reading tea leaves: How humans interpret topic models. In Advances
in Neural Information Processing Systems.

[13] Zhengdao Chen, Lisha Li, and Joan Bruna. 2019. Supervised Community Detec-
tion with Line Graph Neural Networks. In International Conference on Learning
Representations.

[14] Evangelia Christakopoulou and George Karypis. 2016. Local item-item models
for top-n recommendation. In ACM Conference on Recommender Systems.

[15] Evangelia Christakopoulou and George Karypis. 2018. Local latent space models
for top-n recommendation. In ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining.

[16] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we
really making much progress? A worrying analysis of recent neural recommen-
dation approaches. In ACM Conference on Recommender Systems.

[17] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American Society for Information Science (1990).

[18] Meghana Deodhar, Gunjan Gupta, Joydeep Ghosh, Hyuk Cho, and Inderjit
Dhillon. 2009. A scalable framework for discovering coherent co-clusters in
noisy data. In International Conference on Machine Learning.

[19] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha. 2003.
Information-theoretic co-clustering. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[20] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for
recommendation systems. In ACM SIGIR Conference on Research & Development
in Information Retrieval.

[21] Michael D Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D Ekstrand,
Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera. 2018. All the
cool kids, how do they fit in?: Popularity and demographic biases in recom-
mender evaluation and effectiveness. In Conference on Fairness, Accountability
and Transparency.

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.

[23] Per Christian Hansen. 1987. The truncatedsvd as a method for regularization.
BIT Numerical Mathematics (1987).

[24] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (2015).

[25] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized
ranking from implicit feedback. In AAAI Conference on Artificial Intelligence.

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In International Conference on World
Wide Web.

[27] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In ACM SIGIR
Conference on Research and Development in Information Retrieval.

[28] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In International Conference
on World Wide Web.

[29] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In IEEE International Conference on Data Mining.

[30] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On
Using Very Large Target Vocabulary for Neural Machine Translation. In Annual
Meeting of the Association for Computational Linguistics and International Joint
Conference on Natural Language Processing.

[31] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In IEEE International Conference on Data Mining.

[32] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[33] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer.
2014. Local collaborative ranking. In International Conference on World Wide
Web.

[34] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2013. Local
low-rank matrix approximation. In International Conference on Machine Learning.

[35] Jacek Łęski. 2003. Towards a robust fuzzy clustering. Fuzzy Sets and Systems
(2003).

[36] Xiang Li, Ben Kao, Zhaochun Ren, and Dawei Yin. 2019. Spectral clustering in
heterogeneous information networks. In AAAI Conference on Artificial Intelli-
gence.

[37] Yeqing Li, Feiping Nie, Heng Huang, and Junzhou Huang. 2015. Large-scale
multi-view spectral clustering via bipartite graph. InAAAI Conference on Artificial
Intelligence.

http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

Local Factor Models for Large-Scale Inductive Recommendation RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

[38] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In International Conference
on World Wide Web.

[39] Dongsheng Luo, Jingchao Ni, Suhang Wang, Yuchen Bian, Xiong Yu, and Xiang
Zhang. 2020. Deep Multi-Graph Clustering via Attentive Cross-Graph Associa-
tion. In ACM International Conference on Web Search and Data Mining.

[40] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing Disentangled Representations for Recommendation. In Advances in Neural
Information Processing Systems.

[41] Benjamin MMarlin. 2004. Modeling user rating profiles for collaborative filtering.
In Advances in Neural Information Processing Systems.

[42] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In International Conference on Machine Learning.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research (2011).

[44] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Conference
on Uncertainty in Artificial Intelligence.

[45] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In International Conference
on World Wide Web.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems.

[47] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. InACMSIGKDD International Conference on Knowledge
Discovery and Data Mining.

[48] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In ACM SIGIR Conference on Research and
Development in Information Retrieval.

[49] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering. In ACM SIGIR Conference on
Research and Development in Information Retrieval.

[50] Hongyi Wen, Longqi Yang, Michael Sobolev, and Deborah Estrin. 2018. Exploring
recommendations under user-controlled data filtering. In ACM Conference on
Recommender Systems.

[51] Joyce JiyoungWhang and Inderjit S. Dhillon. 2017. Non-Exhaustive, Overlapping
Co-Clustering. InACM on Conference on Information and KnowledgeManagement.

[52] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In ACM International Conference on
Web Search and Data Mining.

[53] YaoWu, Xudong Liu, Min Xie, Martin Ester, and Qing Yang. 2016. Cccf: Improving
collaborative filtering via scalable user-item co-clustering. In ACM International
Conference on Web Search and Data Mining.

[54] Yaowei Yan, Yuchen Bian, Dongsheng Luo, Dongwon Lee, and Xiang Zhang.
2019. Constrained local graph clustering by colored random walk. In The World
Wide Web Conference.

[55] Jaewon Yang and Jure Leskovec. 2012. Community-affiliation graph model for
overlapping network community detection. In IEEE International Conference on
Data Mining.

[56] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In ACM International Conference
on Web Search and Data Mining.

[57] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and
Deborah Estrin. 2018. Openrec: A modular framework for extensible and adapt-
able recommendation algorithms. In ACM International Conference on Web Search
and Data Mining.

[58] Sirui Yao and Bert Huang. 2017. Beyond parity: Fairness objectives for collabora-
tive filtering. In Advances in Neural Information Processing Systems.

[59] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

	Abstract
	1 Introduction
	2 Notation and Tasks
	3 End-to-end Local Factor Models
	3.1 Itemset aggregator
	3.2 Differentiable latent co-clustering
	3.3 Masking-based training loss
	3.4 Model complexity

	4 Experimental setup
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Baselines
	4.4 Implementation details

	5 Results and discussion
	5.1 Top-K inductive recommendation
	5.2 User-item co-clustering

	6 Related Work
	6.1 Local recommendation models
	6.2 Community detection and co-clustering

	7 Conclusions and future work
	References

