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Abstract—Commercial and residential buildings are usually
instrumented with meters and sensors that are deployed as part
of a utility infrastructure installed by companies that provide
services such as electricity, water, gas, security, phone, etc. As
part of their normal operation, these service providers have direct
access to information from the sensors and meters. A concern
arises that the sensory information collected by the providers,
although coarse-grained, can be subject to analysis that reveals
private information about the users of the building. Oftentimes,
multiple services are provided by the same company, in which
case the potential for leakage of private information increases.
Our research seeks to investigate the extent to which easily
available sensory information may be used by external service
providers to make occupancy-related inferences. Particularly, we
focus on inferences from two different sources: motion sensors,
which are installed and monitored by security companies, and
smart electric meters, which are deployed by electric companies
for billing and demand-response management. We explore the
motion sensor scenario in a three-person single-family home
and the electric meter scenario in a twelve-person university
lab. Our exploration with various inference methods shows that
sensory information available to service providers can enable
them to make undesired occupancy related inferences, such as
levels of occupancy or even the identities of current occupants,
significantly better than naive prediction strategies that do not
make use of sensor information.

I. INTRODUCTION

Modern residential and commercial buildings have a multi-
tude of sensors and meters installed in them by external service
providers. In addition to being used for service delivery and
billing, the data from these sensors can also give important
feedback to the users and help the provider provision value-
added services and recommend customized service plans.
However, there is also the risk that information from these
sensors can be used to make unwanted inferences about
occupants and their behavior.

One specific source for potentially privacy-infringing data
comes from the sensors set up by security companies. Residen-
tial security systems have grown considerably in sophistication
as they are now always connected and engage in frequent bi-
directional information exchange with monitoring services. In
particular, sophisticated services, such as Alarm.com1, have

1http://www.alarm.com/

emerged that collect measurements from sensors in real-
time, even when the system is not armed, and provide a
variety of additional services via smartphone apps and web-
sites. According to Alarm.com, over 1 million properties and
20 million individual sensors have been monitored by their
security system since October 2012. While home security
sensors are anonymous, when combined with publicly avail-
able information, there is potential of making non-anonymous
inferences about specific residents. Another potential source
for inferences about occupancy comes from electrical data
available from government-mandated smart meters. According
to a 2011 U.S. Energy Information Administration’s report,
37,290,374 advanced metering infrastructures have been in-
stalled around the country to measure and record electricity
usage and provide the corresponding data to both the utility
company and customers [1]. These meters can provide power
consumption data either every few seconds or every few
minutes. Algorithms can then be applied to data collected from
these meters to create a model that maps changes in power to
changes in occupancy.

The work described here is motivated by the intuition that,
by applying the right models and classifiers to data collected
from specific sensors, we can infer answers to the following
four occupancy questions: 1) Is a particular space occupied?
2) How many people are there in that space? 3) If that space
is occupied, what are its occupants’ identities? 4) Which
particular subspaces do they occupy? In this paper, we seek
to quantify the extent of information leakage possible from
access to either motion sensors or electric meters. For the
motion sensor scenario, we focus on passive infrared sensors,
which are the most common sensors found in home security
systems. In this context, we present results on exploring
occupancy questions 2 and 3 by using data from a three-
person family home. For electric meter-based inference, we
focus on questions 1 and 2 while using data from a twelve-
person university lab. In this paper, we make the following
contributions:

• We evaluate the possibility of inferring the number and
identity of occupants in a house by only using motion
sensors.
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• We characterize the evolution of the occupancy state of a
house via the learning based Conditional Hidden Markov
Model and the intuitively-designed rule-based method.

• We explore the possibility of non-intrusive occupancy
inference by using aggregate smart meter data to infer
both binary occupancy and range of occupancy level.

As a roadmap for the rest of the paper, we first intro-
duce the models used in the motion sensor-based context.
Specifically, Conditional Hidden Markov Model, Conditional
Random Fields, Hidden Markov-Support Vector Machine and
a rule-based method are shown in detail in section III-A. Next,
in section III-B, we explain our methodology for inferring
binary and ranged occupancy in the electric meter-based
scenario. Then, in sections IV, we describe the experimental
setting for both of our experiments. Finally, in section V, we
propose several evaluation metrics and utilize them to compare
the performance of different models.

II. RELATED WORK

There is a significant body of literature related to occupancy
analysis using various types of sensor data. For example, Agar-
wal et al. used a finite-state machine driven by motion and door
sensor events to infer whether an office room is occupied or not
[2]. Motion and door sensors have also been used for activity
inference, with Nazerfard et al. using Bayesian Networks to
predict the occupant activity in a single-resident home densely
instrumented with such sensors [3]. However, neither of those
works considered the case of multiple occupants or tried to
distinguish their identities.

Prior work that has sought to handle multiple occupants
and infer their identity often rely on imaging, with Erickson
et al. using a network of low-power embedded cameras [4].
Beyond imaging, Hnat et al. implemented Doorjamb, a system
that uses custom sensors combining motion, door contact, and
ultrasonic range finders to detect and identify (from height
measurement) occupants moving across rooms [5]. While
capable of much more sophisticated inferences and higher
accuracy, Doorjamb, in its present form, is best suited for
special deployments, such as in labs or as part of research
studies.

In terms of basic occupancy estimation, several other sys-
tems exist, though they are considered intrusive because they
rely on data from sensors that are not usually available to
outside service providers [6], [7], [8]. Although Ghai et al.’s
experimental context is different from ours, we still utilize
parts of their approach when choosing and evaluating different
machine learning algorithms on our sensor data [6]. Finally,
Chen et al. and Kleiminger et al. have shown that data from
a smart meter can be used to infer binary occupancy patterns,
but they utilize different algorithms/features and focus on a
different setting than we do [9], [10].

III. METHODOLOGY

A. Motion Sensor-based Scenario

The first opportunistic sensor data we considered comes
from the motion sensors installed by security companies. In

this scenario, our goal was to explore the possibility of infer-
ring the number of residents in the house and their identities,
at any given time, by using only the motion sensor signals that
they trigger. Intuitively this is possible as occupants in a home
have movement patterns that are distinct in space and time, for
example people may sleep in different bedrooms. This opens
the possibility that a sophisticated machine learning algorithm
might learn to discriminate movement trajectories belonging to
different occupants, thereby identifying the current occupants
just from anonymous motion events. In this experiment, we
incorporated data from motion sensors and the time of day
as inputs into our algorithms. We worked with two different
sensor placement scenarios: rich resources, where there is one
motion sensor in each of the ten rooms of the house and limited
resources, where there are only motion sensors installed in
the bedroom, study room and foyer, the three locations most
commonly monitored by modern home security systems.

Fig. 1. Overview of the models used in motion sensor based scenario

As an overview, Fig.1 shows the two categories of methods
that are proposed under this scenario: learning-based and rule-
based. Although the first set of methods requires training data,
we still considered it because we do not want to assume
limitations on the complexity of the model that an adversarial
monitoring company can access. We applied cross-validation
on our data with three different models in order to infer the
number of occupants and their identities in the home. The three
models considered are: Conditional Hidden Markov Model,
Conditional Random Fields and Hidden-Markov Support Vec-
tor Machine. For the rule-based approach, several rules are
presented which do not require any training data.

1) Conditional Hidden Markov model: This model is a
proposed Hidden Markov Model [11] based classifier. To avoid
the large number of states that a straightforward mapping of
the problem structure to a flat HMM would entail, we created
a variant, which includes the hour of day as a mechanism to
control the transition probability matrix of a HMM. We call
this model Conditional HMM. Fig.2 shows the time evolu-
tion of the hidden state (top) and motion sensor observation
vector (bottom) with the transition governed by the transition
probability matrix (horizontal arrow). Specifically, at the top
of Fig.2, Hi and Si(i = 1, 2, · · · , T ) represent the hour of day
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and the state number for the time slot i respectively, whereas at
the bottom, M (1)

i ,M
(2)
i , · · · ,M (10)

i (1, 2, · · · , T ) denotes the
output of ten motion sensors at time slot i.

Fig. 2. Time evolution of the Conditional Hidden Markov Model

To make the model more tractable and clear, we defined a
mapping between the state number and the occupancy state
of the house. In our subject residence, the maximum number
of the potential occupants in the house is three. Therefore,
having 8 different states is sufficient to represent all possible
combinations of the occupants in the house. The mapping is
done in a binary-decomposition way and is shown in Fig.3.

Fig. 3. Mapping between the state number and occupancy state in Conditional
HMM

For the parameter-learning part of our Conditional Hidden
Markov Model, the criteria of maximum joint probability is
adopted. In terms of our model, the joint probability of the
hidden states and the observation is derived from (1). By
using this criteria, the transition and emission probabilities are
learned and the Viterbi algorithm is then applied to infer the
most probable sequence of hidden states along T time slots.

p(Sn,M
(1)
n , · · · ,M(10)

n ) =
T∏

i=2

p(Si|Si−1, Hi−1)p(M
(1)
i , · · · ,M (10)

i |Si)
(1)

2) Conditional Random Fields: CRF [12] is a commonly
used discriminative model to segment and label sequences,
which is advantageous in that it does not require the two
independence assumptions [13] of HMM: 1) Present state
only depends on its immediate predecessor and 2) Present

Fig. 4. The structure of Conditional Random Fields

observation only depends on the present state; This allows
CRF to adopt more complex feature sets by modeling the
posterior probability instead of joint probability. The standard
form of CRF can be seen in (2), where F , x and y represent
the feature function, observation and hidden state respectively.
After applying Z(x) to normalize the probability value from
0 to 1, the weighted parameter λj can be learned under
the criteria of maximum posterior probability. When making
predictions under the CRF model, the output sequence which
maximizes the posterior probability (2) will always be chosen.
In the CRF model we propose, the definitions of state and
observation are the same as the ones in Conditional HMM,
and each feature function is the sum of the corresponding
indicator functions along time (3).

p(y|x) = 1

Z(x)
exp{

∑
j

λjFj(y,x)} (2)

Fj(y,x) =

T∑
i=1

fj(yi−1, yi, xi, i) (3)

Specifically, the structure of the CRF model we applied
in our problem is presented in Fig.4 where the preceding
state is correlated to both the present state and observations.
The shaded boxes in Fig.4 are the factor nodes [13] which
carry out the calculation of the indicator functions. For the
implementation of the CRF model, a standard toolkit called
CRF++ [14] was adopted in our problem.

3) Hidden Markov Support Vector Machine: Hidden
Markov-Support Vector Machine (HM-SVM) [15] is another
discriminative model that we considered. It was chosen for its
capacity to combine the strengths of Support Vector Machines
and Hidden Markov Models to potentially obtain better results
than each of the methods could individually. The features
we chose to use with HM-SVM are related to the first-order
transition and zero-order emission properties of traditional
HMM. To implement HM-SVM, a package called SVM-HMM
[16] was used.

4) Rule-based Method: Unlike the learning based methods,
the rule-based method does not need a mandatory learning
process as a generic set of rules applicable to a set of house-
holds with common attributes may be formulated based on
background knowledge. This makes the approach applicable
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Fig. 5. NUM Calculation (Sensors trigged simultaneously or successively in
10 seconds)

to a wide variety of households. We designed the rules on the
basis of the following two principles: 1) Motion sensors do not
provide any clues about occupancy at night when everyone is
sleeping. 2) Such sensors embody the behavioral information
of the occupants in the daytime, as they are more active then.
The proposed method can be divided into four successive
steps:

Step 1: Sensor Topology Inference: In this step, we tried
to infer the distribution of the motion sensors in the house.
The algorithm published by C. Ellis et al. [17] was adopted
here. The basic idea is that if two sensors are always triggered
successively in 30 seconds, then they are adjacent, otherwise
they are remote.

Step 2: NUM Calculation: NUM is defined as the maxi-
mum number of remote sensors that are triggered simultane-
ously or successively within 10 seconds, as illustrated by Fig.5.
Intuitively, the number of remote sensors that are triggered at
the same time determines the minimum number of residents
in the home, because a single person cannot possibly trigger
multiple remote sensors at the same time.

Step 3: Number of Occupants Inference: In order to infer
the number of occupants with respect to the layout of motion
sensors, two rules were designated here: 1) For the daytime
period (7 a.m. to 6 p.m.), the value of NUM is the number of
occupants at each corresponding time slot. 2) For the nighttime
period, everyone is present in the house.

Step 4: Identities of Occupants Inference: Finally, after
inferring the number of occupants in step 3, a naive and
direct rule was applied to guess the identities of the occupants:
randomly choose a person when an occupancy related event
occurs.

5) Data Pre-processing: The raw data from PIR sensors
cannot be directly used as input to our models for the following
two reasons: 1) PIR sensors are not perfect and they sometimes
generate false events due to outside interference. 2) The
motion sensors output discrete events even when there is
continuous movement. For our system, the PIR sensor sends
a sensor-managing gateway the sequence 0-1-0 whenever
motion is detected. This sensor-managing gateway then pushes
this data to Xively2.

The point of the data preprocessing step is to solve the two
problems mentioned above. The method we used is presented
in Fig.6: When a motion is detected and there is no other ac-
tivity 30 seconds before or after it, then it is regarded as noise

2https://xively.com/

Fig. 6. Methods for the Motion Sensor Data Preprocessing

and ignored. Otherwise, time slots with successive motions are
turned into a block representing continuous movement.

B. Electric Meter-based Scenario

The second source of opportunistic sensor data that we con-
sidered are the government-mandated smart meters installed
in many homes and office buildings. The idea is that, when
a person enters a room, they will cause some recognizable
step in the aggregate power consumption by their use of
some appliance. Our goal is to map this change in power
consumption to changes in occupancy.

In this section, we focus on two specific inferences, binary
occupancy (i.e. is the number of occupants zero or non-
zero?) and ranged occupancy (i.e. which of the several ranges
does the number of occupants lie in?). To infer occupancy,
we considered a variety of classifiers within a free machine
learning toolkit. A major benefit of our approach is that it can
be easily extended to include data from other sources, such as
water flow, ambient sound, network traffic, etc.

1) Ranged Approach: Instead of attempting to predict the
exact number of people in the lab, we tried to predict the
occupancy in terms of ranges or levels. Ranged occupancy
prediction is significantly more challenging than binary occu-
pancy prediction but is also much more feasible than trying
to predict the exact number of people. The aggregate power
measurement of the lab fluctuates too much for us to be able
to flawlessly capture the changes that correspond to a single
person coming in or out of the lab. Furthermore, sometimes
people come in the lab but do not interact with any appliances,
therefore remaining invisible to our model. In such cases, any
attempt at predicting the exact number of people would fail.

Therefore, in order to better understand the occupancy
trends of the lab, we binned a month’s worth of ground truth
into 12 different bins (because 12 is the maximum number of
people in the lab). We then combined the bins into 4 larger
bins in order have more instances in each occupancy level.
The ranges that were chosen based on the binned data are: 0,
1-2, 3-5, 6-12 people. Note that the distribution of instances
is still skewed towards the lower occupancy levels, but after
binning, there are at least a few hundred instances in each
level.

2) Data Pre-processing and Feature Extraction: To create a
dataset that can be used with our machine learning algorithms,
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we first took the aggregate time-series data from the smart
meter and applied a series of consecutive, non-overlapping
time windows to it. Next, we extracted the following eight
features from each window: mean, peak, and range for both
real power and reactive power, and the difference between the
current time window’s mean and the previous time window’s
mean (for both real and reactive power). Then, we included
the hour of day and light level for each time window. After
that, we appended both a binary occupancy ground truth trace
and a ranged occupancy ground truth trace to our dataset.
Finally, our datasets were split into training and testing sets.
This process involves extracting one day’s worth of data from
the entire set to be the testing data, while saving the rest for
training.

3) Classifiers: For our experiment, we wanted to test
our dataset with a variety of classifiers and compare their
performances. Several machine learning libraries are publicly
available in Matlab, Python, Weka, R, etc. In the end, we chose
Weka, a free machine learning toolkit created by the University
of Waikato, because of its ease of installation, inclusion of
major classifiers, and intuitive GUI.

Within Weka, we considered their implementation of the fol-
lowing classifiers: NaiveBayes, Random Forest, Decision Tree,
Multilayer Perceptron, and k-Nearest Neighbor. We chose that
set so that we would consider at least one classifier from
each of the major machine learning algorithmic categories. We
then used ten-fold cross validation on the training set to find
the optimal parameters for each classifier. Finally, we applied
the learned model to the testing set and recorded various
performance metrics.

C. Naive Strategy

All of our methods in both scenarios are compared to a
“naive strategy” where no sensor information is used when
making occupancy predictions. The naive strategy is important
to consider because it provides a benchmark for our classifiers.
For the lab, the naive strategy is as follows: Between 10pm
and 9am we guess that the lab is unoccupied, between 9am and
6pm we guess that the lab has 4 occupants, and between 6pm
and 10pm we guess 1.5 people (1.5 is the mean of the 2nd level
of occupancy and 4 is the mean of the 3rd level of occupancy).
Similarly, for the binary occupancy problem, the naive strategy
guesses that during 10pm to 9am, the lab is unoccupied and
on all other times, it is occupied. This strategy was designed
based on prior knowledge about our lab’s occupancy trends.
For the home setting, the naive strategy guesses that everyone
is at home throughout the night and that the occupants are
totally absent from the residence during the day (7 a.m. to 6
p.m.).

IV. EXPERIMENTAL SETUP

A. Three-person House

The motion sensor-based experiment was conducted on a
house outfitted with ten PIR sensors, one in each room. We
knew apriori that there are three potential occupants in this
residence.

Data Collection: PIR sensor data is continuously sent to
the cloud data storage service known as Xively. For our
experiment, we queried Xively for nine days worth of motion
sensor data, and then used cross-validation to divide the whole
data set into learning and testing sets. Meanwhile, we obtained
the ground truth by looking at pictures taken by the camera
installed in the house and manually creating a ground truth
trace.

B. Twelve-person University Lab

The electric power experiment was conducted on a 1200 sq.
ft. university lab, which is occupied by 12 students. The lab is
equipped with a Veris electric panel monitor, which provides
both breaker-level and aggregate electricity consumption data
(we use only the latter). Since the ceiling lights in the lab are
connected to a non-dedicated panel elsewhere in the building,
we used a light sensor to track the status of the ceiling lights
and use that as a proxy for the lights’ contribution to the
whole lab’s power consumption. Finally, the lab has a myriad
of electrical loads with complex power signatures: desktop
computers, peripherals, test instruments, laser cutter, thermal
chamber, water dispenser, mini-fridge, specialized test-beds,
etc.

Data Collection: The Veris monitor is polled every two
seconds, and the resulting time series data is stored by the
Xively cloud service. To collect ground truth, we deployed two
network cameras, each pointed at one of the entry doors, and
triggered image capture at a camera whenever the correspond-
ing door is opened. The images captured are then manually
analyzed to count the number of people going in or out.

V. EVALUATION AND ANALYSIS

A. Accuracy Evaluation

To evaluate and compare the performance of each model,
several corresponding metrics are proposed in this section to
measure the ability of each model to make different types of
inferences.

1) Symmetric Difference: This metric is used to compare
the performances of algorithms trying to infer the identities of
the occupants. Specifically, if we denote:
Ca = set of people actually in the space
Cp = set of people predicted to be in the space
Then the error is defined in (4), where SD refers to the
symmetric difference.

Error = |SD(Ca, Cp)| (4)

2) Binary Classification Error: For the binary occupancy
inference problem, we consider the following metrics: Average
Precision ( TP

TP+FP ), Average Recall ( TP
TP+FN ), and Average

F-1 score ( 2×Precision×Recall
Precision+Recall ) [18], where TP, FP, TN, and

FN are the number of instances of true positive, false positive,
true negative, and false negative respectively. In the binary
occupancy scenario, positive and negative refer to predictions
of “occupied” and “unoccupied”. Furthermore, in all our
experiments, an instance is a single time window considered in
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Fig. 7. Ground truth and prediction for the number of occupants using CRF+10 Sensors (9 days)

(a) State Prediction of Occupant 1 (b) State Prediction of Occupant 2 (c) State Prediction of Occupant 3

Fig. 8. Ground truth and prediction for the occupancy state of each potential occupant using CRF+10 Sensors (9 days)

our dataset. Intuitively, higher values for these three metrics
mean that a model is able to make accurate predictions for
both of the classes.

3) Error in Predicting Occupancy Level: For both the lab
and home settings, we used our models to predict the level
of occupancy, either the exact number of occupants or one
of a priori selected ranges of values it lies in. We used
the former for the home deployment where the maximum
number of occupants is small, and the latter in the case of
the laboratory where the maximum number of occupants is
large and a coarser measure of occupancy level is more useful.
Although our methods approach occupancy level prediction
as a multi-class classification problem with each occupancy
level or range corresponding to a different class, for purposes
of error analysis the problem is better viewed as one of
regression. A good error metric for regression problems is
mean absolute error between predicted and actual value of the
estimated variable. To handle the case of occupancy ranges,
we represent each range by its center value. When expressed
in terms of errors in classification, the error metric can be
expressed as in (5), where mismatches between classes are
weighed by the distance between them, and we therefore refer
to the error metric as weighted classification error, or simply
weighted error.

Weighted Error =

∑N
i=1(δ(C

i
predict 6= Ci

actual)×Di)

N
(5)

B. Motion Sensor-based Inference

1) Number of Occupants Inference: The results for this
inference are shown in Fig.9, where 7 different combinations
of models and sensor settings were tested for 9 days worth of
data. In the best case, the CRF model in the rich-sensor setting
obtained an average weighted error of 0.1929, which is almost
one third of the naive strategy’s error. The ground truth and
prediction traces under this best case are shown in Fig.7, which
further illustrates the possibility of tracking the occupants’
number by solely using the motion sensors installed.

2) Identities of Occupants Inference: The results for this
inference problem are presented in Fig.9, where the best
performing model and settings turn out to be the same as the
experiment above. The average symmetric difference here is
0.202, also lower than one-third of the Naive strategy’s sym-
metric difference. Furthermore, the result of state prediction
for each occupant is shown in Fig.8, where state 1 and 0
represents whether a certain occupant is at present or absent.
The high prediction accuracy shown in Fig.8 reveals that
measurements of motion sensors alone, which were regarded
as the indication of binary occupancy previously, possess
certain level of private information concerning the identities
of occupants.

C. Electrical Power-based Inference

1) Binary Occupancy: For this inference, we considered
8 days worth of data and used a 1-minute time window for
feature extraction. Five-fold cross validation was used on the
dataset and results for each fold were averaged to obtain the
final values. The results are shown in Fig.10. The Multilayer
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Fig. 9. Prediction error for the motion sensor-based scenario

Perceptron and Random Forest classifiers performed the best,
with Precision, Recall, and F1 score measuring about 0.1
higher than those resulting from the naive strategy. The reason
why Precision, Recall, and F1 score were so similar for each
of the classifiers is because the models did not predict many
False Positives or True Negatives.

The ground truth and prediction traces under the Random
Forest classifier are shown in Fig.12. These low error values
were expected because, intuitively, binary occupancy is easy to
predict with the features that we have. Specifically, by taking
into account the time of day and the light levels, we can
already predict with high confidence when the lab is occupied
or not.

Fig. 10. Prediction error for the electric meter-based scenario (binary
occupancy inference)

2) Ranged Occupancy: This experiment used the same
settings as the binary occupancy scenario. The results shown
in Fig.11 show that once again, the Multilayer Perceptron and
Random Forest classifiers performed the best. Their average
weighted errors are about half of the naive strategy’s weighted
error. The ground truth and prediction traces under the Ran-
dom Forest classifier are shown in Fig.13.

Fig. 11. Prediction error for the electric meter-based scenario (ranged
occupancy inference)

3) Sample Complexity Experiment: The purpose of this
experiment was to explore how varying the training set size
would affect our classifiers’ prediction error. For this experi-
ment we varied the number of days included in the training
set while keeping the testing set at one day. We used the
Random Forest classifier with a time window of 1-minute for
all choices of dataset sizes. We considered datasets that include
the following number of days: 3, 5, 8, 10, 15, and 20.

We chose 3 days- August 21, 23, and 25 as our testing
days. For each testing day we took its preceding 3, 5, 8, 10,
15, and 20 days and used those days as the training set. We
then ran the classifier and averaged the weighted error for all
three days. The results are shown in Fig.14.

These results are interesting and show that a large training
set may not be ideal. From Fig.14, we see the error decrease
until the training set is about 8 days and then start to increase
again. This makes sense because a certain day’s power fluctu-
ations is more likely to be similar to the power fluctuation of
days close by rather than a long time before it. By taking into
account a whole preceding month’s worth of power data when
building a model, we introduce extra variation that decreases
prediction abilities. On the other hand, by taking into account
too few days, we do not capture enough of the variation that is
required to build an accurate model. The optimal point seems
to be around a week’s worth of data.

4) Time Window Experiment: Finally, we wanted to ex-
plore how the size of the time window affects a classifier’s
performance. We varied the time windows from which we
extract features from 1 minute to 30 seconds to 10 seconds
in order to see its effects. Intuitively, a well-chosen time
window is important because it can help the model better
capture changes in power consumption that correspond to
changes in occupancy. For example, if the time window is
too large, an occupancy-related step in the aggregate power
could be masked by other fluctuations when features, such as
the mean, are extracted from the window. For this experiment,
we stuck with the 8 day dataset previously described and
ran the Random Forest algorithm to see how its performance
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Fig. 12. Ground truth and prediction for binary occupancy using electric meter data (8 days)

Fig. 13. Ground truth and prediction for ranged occupancy using electric meter data (8 days)

Fig. 14. Average weighted error for different training set sizes

varies. Results are shown in Fig.15. The results show that a
shorter time window results in lower error. This implies that
occupancy-related power changes most likely occur within 10
seconds of an entry or exit event.

VI. FUTURE WORK

A. Improving Motion Sensor-based Inference

1) Room-level Occupancy Inference: So far, for the motion-
sensor based scenario, all experiments were done on a home-
level setting. We want to explore this same problem but on
a room-level setting. Specifically, our goal is to identify the
exact occupants in each room. We believe this is possible as
the motion sensors can record the diurnal movements of the
occupants and we can infer their identities by learning different
room-usage patterns of each occupant in the residence. To

Fig. 15. Average weighted error for different time windows

exploit this problem, we need more complex models and also
fine-grained room-level ground truth.

2) Utilizing More Inference Models: The machine learning
models presented in this paper were chosen for their capacities
to describe the motion sensor scenario’s time-series events.
Apart from our models, a multitude of classifiers, like the
ones available in Weka, are also worth trying in the future.

B. Improving Ranged Occupancy Inference

Even though our methods are able to produce inferences
that have half the error of the naive strategy’s inferences, we
believe that more advanced techniques can decrease the error
even more and help us better understand the extent of privacy
leakage.
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1) Load Disaggregation and Markov-related models: One
idea is to apply load disaggregation techniques to the aggregate
power data to see if we can better separate non-occupancy
correlated loads from occupancy correlated loads. These dis-
aggregation techniques are well studied in the field of non-
intrusive load monitoring; Their goal is to take an aggregate
power trace and separate it into individual appliance power
traces. With these disaggregation expanded datasets, we want
to apply Markov-related algorithms, such as the ones used in
the motion sensor setting, to evaluate their performance.

2) Sensor Fusion: Another idea is to integrate other sources
of sensor data that are also available to external service
providers, to our inference process. For example, in the univer-
sity lab, we could include aggregate network traffic data with
our electric meter data to potentially decrease our prediction
errors. Furthermore, for the home setting, we could fuse water
flow data with electrical power data to make binary and ranged
occupancy inferences.

VII. CONCLUSION

In this paper, we sought to provide insights into the risks of
leaking private information presented by sensor data streams
that are opportunistically available to companies providing
utility and other services to a building. Our empirical work
with data from motion sensors and electric meters shows that
undesirable inferences about occupancy are certainly feasible,
and the risk of this happening will only increase as machine
learning methods advance in sophistication and as companies
gain access to more background data from public sources
and from other companies as part of business arrangements.
Occupancy related inferences are only the tip of the iceberg,
and other inferences such as specific activities being associated
with specific occupants are also possible. While laws limiting
how service providing companies can use such sensory data
are certainly helpful (e.g. SB1476 law in California regulates
the use of smart meter data by utilities), they focus on
disclosure and liability, and do not prevent companies from
analyzing the data to draw additional inferences for business
use. A challenge, perhaps for the research community, is to
develop sensing system architectures that better balance risk
vs. utility by providing users with the following: visibility to
the flow of data from their sensors to the service providers,
an understanding of the risks that such data presents, and
control over that flow via automated mechanisms as part of a
“sensor firewall” that would suitably sanitize the sensor data
to maintain both privacy and utility.
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