Beyond Classification: Latent User Interests Profiling
from Visual Contents Analysis
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Our interests are manifested online ...
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Preferences learning using small data
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Text/label-centric approach is widely studied
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But preferences are sometimes not just about text...
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Intra-categorical variance: Hard to capture with text/label!



Research question

Images’ predictive power for users’ preferences beyond labels

Task 1: Pairwise Comparison
Task 2: Prediction



Pairwise Comparison
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Prediction: Consistency of Preferences
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Dataset

@ Travel boards

@ > 100 pins
@ 3 pins after June 2014

5,790 Travel boards

1,8V 3,990

Background corpus Analysis




User Modeling and Image Representation
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* B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. “Learning Deep Features for Scene Recognition using Places Database.”
Advances in Neural Information Processing Systems 27 (NIPS), 2014



User Modeling and Image Representation




Pairwise Comparison
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Effects of background distribution!



Pairwise Comparison
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Pairwise Comparison
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Pairwise Comparison
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Prediction
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Prediction
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Conclusion
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Small data fueled preferences learning - what can we do next?
% Utilities of images beyond text/labels.
% Multi-modal data fusion

% End-to-end learning



For more information

http://www.cs.cornell.edu/~ylonggqi

http://smalldata.io/

M ylonggi@cs.cornell.edu

YW @ylongqi
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