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Predicting users’ proficiencies is a critical component of AI-powered personal assistants. This article intro-

duces a novel approach for the prediction based on users’ diverse, noisy, and passively generated application

usage histories.We propose a novel bi-directional recurrent neural networkwith hierarchical attentionmech-

anism to extract sequential patterns and distinguish informative traces from noise. Our model is able to attend

to the most discriminative actions and sessions to make more accurate and directly interpretable predictions

while requiring 50× less training data than the state-of-the-art sequential learning approach. We evaluate

our model with two large scale datasets collected from 68K Photoshop users: a digital design skill dataset

where the user skill is determined by the quality of the end products and a software skill dataset where users

self-disclose their software usage skill levels. The empirical results demonstrate our model’s superior per-

formance compared to existing user representation learning techniques that leverage action frequencies and

sequential patterns. In addition, we qualitatively illustrate the model’s significant interpretative power. The

proposed approach is broadly relevant to applications that generate user time-series analytics.

CCS Concepts: • Information systems → Personalization;

Additional KeyWords and Phrases: User skill, recurrent neural network, hierarchical attention, user modeling

ACM Reference format:

Longqi Yang, Chen Fang, Hailin Jin, Matthew D. Hoffman, and Deborah Estrin. 2018. Characterizing User

Skills from Application Usage Traces with Hierarchical Attention Recurrent Networks. ACM Trans. Intell.

Syst. Technol. 9, 6, Article 68 (October 2018), 18 pages.

https://doi.org/10.1145/3232231

1 INTRODUCTION

People increasingly rely on professional applications to accomplish complex tasks at work. For
example, artists use Photoshop and Illustrator for creative artwork, and engineers design 3D mod-
els with Autodesk. The user’s proficiency in manipulating these professional tools has become an
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important component in application personalization (e.g., customization of the user interface [34],
personal assistants [17]), tutorial recommendation [35], and talent search [2]. Therefore, develop-
ing effective models and systems that predict users’ skill levels has captured much attention from
industry and academia [11, 12, 36].

In this article, we leverage passively generated application usage traces for skill level predic-
tion, which is far more scalable and immersive than traditional user testing and surveying. We
utilize traces that contain a series of actions or commands1 performed by users in the application,
e.g., open, gaussian filter, and crop in Photoshop. These traces are routinely recorded to generate
application usage statistics.
Previous user representation learning techniques commonly model users with bag-of-action

features, i.e., the frequency of each action performed in the history [11, 28]. This approach cap-
tures the associations between users’ skill levels and their action choices (e.g., the beginners may
solely perform basic actions while experts tend to use advanced features) but has limitations in its
prediction of expertise:

(1) Sequential patterns. Apart from the frequency of each action performed, how the actions
are sequentially combined to accomplish tasks is relevant to distinguish experts from
general users. For example, the trial-and-error of beginners may yield many repetitive
sequences in his or her application usage history. It is difficult for the bag-of-actions
approach to capture such patterns because it collapses the sequence data into unigram
collections.

(2) Identifying informative actions and sessions.2 Intuitively, some common sessions may not
be discriminative in predicting users’ skill levels. For example, a session used to crop an
image, such as [open]-[crop]-[save], is pervasive for all users. In addition, for a given ses-
sion, some actions, such as [open], are not indicative of the user’s proficiency. As bag-of-
actions does not differentiate informative actions and sessions from uninformative ones,
the predictions are sub-optimal.

Recently, Yang et al. [43] proposed a util2vec framework based on word2vec [33] to learn a
software user representation from the sequential action history, and demonstrated its power in
predicting users’ preferences and areas of focus. Nevertheless, although this approach takes into
consideration sequential patterns, it overlooks the discriminative power differences of action se-
quences (i.e., some sub-sequences may be more informative than others), which makes it subopti-
mal for skill predictions (see Session 2.4 for algorithm details and Sections 5 and 6 for experimental
results).
In this article, we propose a novel hierarchical attention mechanism with a bi-directional recur-

rent neural network (h-ATT-BiRNN) (Section 3) to tackle the limitations mentioned above. Our
model takes as input a list of sessions from a user and produces a score proportional to the user’s
level of expertness. It conducts a soft-search for the most informative actions in the user’s us-
age history using our attention modules and BiRNN and then makes the predictions accordingly.
Compared to previous approaches, our model advances the state-of-the-art in three ways:

(1) h-ATT-BiRNN makes more accurate predictions by leveraging an action-level and a
session-level attention mechanism to search for, and attend to, the most informative
sequences.

1We use the terms “actions” and “commands” interchangeably. Each action is usually a valid click in the application.
2In software applications, a session contains a sequence of actions performed from the launch of the application to the

point when it is closed.
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(2) The predictions from h-ATT-BiRNN are directly interpretable. We are able to discover
sequential patterns that are most predictive of the user’s skill level, and the patterns
cannot be captured by the prior art [11, 28, 43]. Such interpretations are useful for service
providers to optimize their services and for the users to improve their skills.

(3) Compared to the previous util2vec model that needs to be trained on traces from 3 mil-
lion users [43], h-ATT-BiRNN requires 50× less training data (less than 60k) and achieves
significantly better performance (Sections 5 and 6). Therefore, it is much easier for the
service providers to adapt and update.

We evaluate h-ATT-BiRNN model and baselines on two large-scale datasets that are passively
and actively collected from 68,456 Photoshop users, respectively. They reflect different dimensions
of users’ skill levels.

(1) Digital design skill dataset. Models are trained to rank [30] the quality of the artwork
created by different users, which is a direct indicator of the user’s digital design skill level,
defined as the abilities to produce high-quality digital media outcomes.

(2) Software skill dataset.We use this dataset to evaluate models’ performances in predicting
users’ software skill levels, i.e., proficiencies in manipulating professional tools. We train
regression models to predict skill levels ranging from novice to expert.

The experimental results demonstrate that h-ATT-BiRNN significantly outperforms the ex-
isting user modeling approaches in terms of area under curve (AUC) and mean square error
(MSE) in both datasets, and it provides sequential pattern interpretations for the prediction. This
work represents an early step in advancing deep learning techniques for the mining and mod-
eling of users’ action sequences. Given the increasing pervasiveness of user time-series analyt-
ics, the model proposed in this article has broad relevance. Our code can be found at https://
github.com/ylongqi/characterizing-user-skills.

2 RELATEDWORK

Our work benefits from previous research on user skill modeling in related domains, software user
modeling, recurrent neural networks (RNNs), and attention mechanisms.

2.1 User Skill Modeling

User knowledge level and skill modeling has been extensively studied in the domain of web
search [5–7, 21, 22, 29, 31, 41, 46–48], recommendation [32], social media [49], and gaming [18,
19]. Previous work designed domain-specific features to model and capture user skills. For exam-
ple, in web search, features were hand-crafted for documents [6, 7, 47], queries [21, 22, 41, 47],
and sessions [7, 41]; in gaming, previous work analyzed the intensity and break [18, 19]; and in
recommendation, McAuley et al. [32] leveraged a latent model to predict users’ experiences.
Compared to previous work on user skill modeling, our research concerns the domain of profes-

sional software, which is less-explored and has much richer functionality than search, gaming, and
recommendation. People accomplish a wide range of complex tasks using such software. There-
fore, hand-crafting features to characterize user skills becomes practically infeasible, and this work
automatically learns feature representations through end supervision.

2.2 Sequential User Behavior Modeling

Modeling users’ sequential behavior has been recently studied in the context of recommenda-
tion [14, 15, 42]. Previous work demonstrated the power of embedding methods [14] and recur-
rent neural networks [42] in encoding sequential patterns, which inspired us to leverage similar
structures in the skill prediction.
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The main goal of recommendation is to learn users’ preferences and rank items accordingly,
which is fundamentally different from skill prediction where the focus is to rank time-series us-
age traces. Therefore, our work complements previous research in terms of developing sequential
models to characterize users’ other important aspects.

2.3 Software User Modeling

Learning representations of software users has captured much attention frommany research com-
munities [9, 11, 24, 28, 43]. Such representations have been shown to inform effective skill level
predictors [11], command recommenders [9, 24, 28], creative content recommenders [43] and user
tagging systems [43]. The framework of predicting users’ skill levels using interaction records is
also widely studied in other domains, such as crowdsourcing [36] and education [12]. Previous
work used a bag-of-actions approach to represent each software user [11, 28], which overlooks
the sequential patterns of the action sequences. To address this issue, Yang et al. [43] proposed the
util2vec framework to learn user representations in a distributed manner. A major limitation of
this framework in skill level modeling is that it fails to consider the condition where some sessions
or actions may not be predictive of the user’s skill level, and assigning equal weights to all data
points may deprive the predictor of making effective judgements based on noisy data streams. As
the strongest baseline that we compare to in the experiments, the util2vec framework is briefly
reviewed in the next subsection (Section 2.4). Compared to the previous work in this domain, our
proposed model jointly learns to encode the sequential patterns of action histories and to attend
to subsequences that are predictive of the user’s skill level. The empirical results demonstrate that
our model achieves better ranking and prediction performance and builds connections between
sequences and the predictive results.

2.4 util2vec Framework

The util2vec framework [43] jointly learns user representations V and action representations X
across a large number of users’ software usage histories (e.g., 3 million users are used in Reference
[43]), where a row in each of the matricesV andX store the representation for a user and an action,
respectively. The representations are trained to maximize the log probability of the correct action
predictions (Equation (1)) across users, i.e.,

∑
u Lu , with the Lu defined as below:

Lu =
1

N − 2K
T−K∑

t=K

logp (at |at−K , . . . ,at+K \ at ), (1)

where [a1, . . . ,aN ] denotes the user’s action history, and K denotes the farthest action before/from
the context. In the optimization function Lu , the conditional probability p is defined as in
Equation (2):

p (at |at−K , . . . ,at+K \ at ) = eyat∑
i eyi
, (2)

wherey = b +Wh(u,at−K , . . . ,at+K \ at ;V ,X ). As suggested by Refernce [43], util2vec leverages
a transfer function that averages a user representation with the representations from 2K actions.
After such a model is trained, for each new useru, the user representationvu is obtained by fixing
b,W ,X and only fitting the user vectorvu to the user u’s action history.

2.5 Recurrent Neural Network

Recurrent neural networks (RNNs) have been shown to be superior in modeling sequential data
traces such as natural language [3] and speech [13]. It successfully enables a wide range of real
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world applications, e.g., machine translation [3, 39], speech recognition [13], and image caption-
ing [40]. Among a number of RNN structures, long short term memory (LSTM) [16] is widely
adopted because of its ability to encode long sequences. In this article, we also build our model
based on the structure of LSTM. To the best of our knowledge, this is the first work that advances
deep sequential models in modeling software users.

2.6 Attention Mechanism

Our idea of hierarchical attention mechanism is inspired by previous work on the alignment of
the encoder and the decoder in neural machine translation (NMT) [3]. The basic idea is to allow
the decoder to soft-search the most relevant words in the source language to make more con-
fident and accurate translations. Our work is focusing on a different domain where there is no
explicit encoder-decoder structure [39], and the model needs to handle hierarchical aggregation
both on the action-level and session-level. Fundamentally, the attention module in NMT is driven
by the current translation status, while our attention module is guided by a single prediction tar-
get. Therefore, our attention modules are suited for static classification and regression tasks while
the attention mechanism in NMT is specifically designed for sequence generation. Recently, the
hierarchical attention network was successfully used in document classification [45]. Our model
is similar to the structure proposed by Yang et al. [45] but focuses on a significantly different and
important application scenarios.

3 H-ATT-BIRNN: HIERARCHICAL ATTENTION

In this section, we describe the proposed h-ATT-BiRNN in the single-user case. A model that pre-
dicts skill levels takes as input a list of sessions i = 1, 2, . . . ,L from a user’s usage history, and
each session i contains a list of actions that the user performed, denoted as [ai1,a

i
2, . . . ,a

i
Ti
] (As the

length of each session may be different, we useTi to represent the number of actions in session i).
The goal of such a model is to predict a score k that is proportional to the user’s skill level.
We build the h-ATT-BiRNN model as Figure 1 shows. First, we represent each action aij using a

vector x ij , which is derived from an embedding module e (Equation (3)):

x ij = e (aij ). (3)

In our model, module e is a simple dictionary look-up that takes aij as the index and returns the

aij th row of an N ×M matrix X , where N denotes the number of unique actions and M denotes

the dimensionality of x ij .
We then design a non-linear action encoder p to derive a representation si for each session i from

a list of action representations, i.e., [x i1,x
i
2, . . . ,x

i
Ti
], as Equation (4) shows:

si = p ([x
i
1,x

i
2, . . . ,x

i
Ti
]). (4)

To capture the sequential patterns and attend to the most discriminative actions, we design an
action-level attention mechanism along with a bi-directional RNN to conduct the representation
learning. We describe the details of the action encoder in Section 3.1.

Afterward, with L session representations, we further derive the user representation v using a
non-linear session encoder q, as Equation (5) shows:

v = q([s1, s2, . . . , sL]). (5)

Our session encoder contains a session-level attention module and is able to discover sessions
that are most predictive of the user’s skill level. The details of the session encoder is presented in
Section 3.2.
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Fig. 1. The high-level structure of the h-ATT-BiRNN model. The rectangles are used to denote modules,

each of which will be discussed in detail in the article. The h-ATT-BiRNN model takes a list of sessions

i ∈ {1, . . . ,L} as inputs and outputs a score k , representing a user’s skill level. Each session i contains a list

of actions ai1, . . . ,a
i
Ti
. Figure notations: e : action embedding module; p: action encoder; q: session encoder; r :

regression function; x j
Ti
: representation for action a

j
Ti
; si : representation for session i ;v : user representation.

Finally, the prediction is made based on a regression function r . In our model, we use a linear
regression, along with a rectified linear unit (ReLU), as shown in Equation (6), to make the pre-
diction, because we believe that the non-linear action encoder p and session encoder q already
provide enough learning capacity:

k = r (v ) =Wr max(v, 0) + br . (6)

In the rest of this section, we present the design of the action encoder p (Section 3.1) and the
session encoder q (Section 3.2).

3.1 Action Encoder p

The action encoder reads a sequence of action vectors [x1,x2, . . . ,xT ] and then produces a session
representation s . (We omit the superscripts of x ij and the subscript of si where they are clear from
context). As is illustrated in Figure 2, we use an RNN [16] as the building block for the encoder
because of its superior performance in modeling sequential traces. With the basic RNN structure, a
non-linear functionд is used to read an input vector x j for each step j and generate a memory state
c j and a hidden state hj , which are then fed into the same function д until reaching the end of the
sequence (Equation (7)), and the hidden state hj is then treated as the contextual representation of
each position j:

c j ,hj = д(c j−1,hj−1,x j ). (7)

However, the representationhj derived from traditional RNN does not encode information from
subsequent or future steps. To achieve more comprehensive contextual representations, we add
backward connections to traditional RNN, i.e., we use bi-directional RNN [37] in our model.
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Fig. 2. The structure of the action encoder p. The rectangles are used to denote modules, and the modules

that share parameters are represented with the same shading. Figure notations: xi : representation for action

i ; −→д ,←−д : the forward and backword RNNs; −→ci ,←−ci : the forward and backward states of the step i ;
−→
hi ,
←−
hi : the

forward and backward outputs of the step i ; hi : the output of the step i ; αi : the attention value for the step

i ; s : the session representation.

Compared to the basic RNN structure, bi-directional RNN contains a forward RNN −→д and a

backward RNN ←−д , as shown in Figure 2. The forward RNN −→д reads the action sequence from

x1 to xT and generates forward contextual representations [
−→
h1,
−→
h2, . . . ,

−→
hT ], while the backward

RNN←−д reads the sequence reversely, i.e., from xT to x1, and generates backward contextual rep-

resentations [
←−
hT ,
←−−−
hT−1, . . . ,

←−
h1]. The final contextual representation of each position j is then the

concatenation of
−→
hj and

←−
hj , as shown in Equation (8):

hj = [
−→
hj
�;
←−
hj
�]�. (8)

We use LSTM for the non-linear functions←−д and−→д , and we refer readers to the original article [16]
for details.
With contextual representationshj encoding action context, we then weighted-sumhj to derive

the corresponding session representation s , as shown in Figure 2 and Equation (9):

s =
T∑

j=1

α jhj , (9)
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such that higher weights are assigned to the positions or actions with stronger discriminative
power. Intuitively, the derived sequence representation attends to the positions that are most pre-
dictive of the user’s skill level, and thus the model is able to make more accurate predictions.
We propose an attention module ta (Figure 2), as defined below,

[α1,α2, . . . ,αT ] = ta ([h1,h2, . . . ,hT ]), (10)

where α1 + α2 + · · · + αT = 1, to implement such an action-level attention mechanism. A multi-
layer neural network is designed to calculate the weights. Specifically, each weight α j is derived
as Equation (11) shows:

α j =
exp(eαj )∑T
i=1 exp(e

α
i )
, (11)

where eαj = v
�
ta
tanh(Wtahj + bta ). As demonstrated in the experiments (Section 5), for a given

position, the module ta learns to predict its power for the end task based on the corresponding
contextual representation, and such a module not only improves the prediction accuracy, but also
enables direct interpretations.

3.2 Session Encoder q

With the action encoder p, each sequence of actions (i.e., a session) is represented by a vector s .
The task of the session encoder q is to aggregate the representations across the user’s sessions
and derive the user representation v . Similar to the design of the action encoder, we want our
session encoder to also possess the ability to distinguish the most discriminative sessions from the
noisy ones, so that the predictions can mostly attend to the informative sequences. We propose a
session-level attention module ts , as defined below, to achieve the goal,

[β1, β2, . . . , βL] = ts ([s1, s2, . . . , sL]), (12)

where β1 + β2 + · · · + βL = 1.
The weights βi (i = 1, . . . ,L) like the ones shown in Equation (9) are used to weighted-sum the

session representations to derive the user representation (Equation (13)):

v =

L∑

i=1

βisi , (13)

where higher value of β is placed on the sessions with higher predictive power. We propose to use
another multi-layer neural network to derive such weights, as presented below:

βi =
exp(e

β
i )∑L

j=1 exp(e
β
j )
, (14)

where e
β
i = v

�
ts
tanh(Wtssi + bts ).

Through extensive experiments, our session encoder is shown to enable the session-level inter-
pretations of the prediction results, and simultaneously improve the prediction performance.

4 END-TO-END TRAINING OF H-ATT-BIRNN

Our proposed h-ATT-BiRNN model learns a non-linear function that predicts a score proportional
to the user’s skill level. Similar to other representation learning approaches [44], h-ATT-BiRNN
can be trained using various kinds of supervisions. Without loss of generality, in this section, we
describe the training procedure for pairwise and pointwise labels.
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4.1 Pairwise Supervision

With pairwise supervision, each training instance contains the action histories from a positive user
u+ (higher skill level) and a negative useru− (lower skill level). We first use a shared h-ATT-BiRNN
model, i.e., with the same parameter values, to predict the scores for both users, denoted as ku+ and
ku− , respectively. Then we calculate the training loss using a hinge loss function (Equation (15)),

L =
∑

(u+,u− )∈Strain
[1 + ku− − ku+]+

=
∑

(u+,u− )∈Strain
[1 +Wr (max(vu− , 0) −max(vu+ , 0))]+,

(15)

where vu+ and vu− represent user representations for u
+ and u−, respectively, and Strain denotes

the training set. Regularization terms will be discussed in Section 5.2.
Intuitively, the loss function L enforces a margin between ku+ and ku− . The loss L is equal to

zero only when ku+ − ku− ≥ 1. After L is calculated, it is then back-propagated to update each
trainable parameter in the model using a gradient descent algorithm.

4.2 Pointwise Supervision

Pointwise supervision directly provides a skill label for each user. With such supervision, we train
the h-ATT-BiRNN model through regression. Specifically, the model is trained to output a score
approximating the true label, and the training loss is calculated as follows:

L =
∑

u ∈Strain
‖ku − k̂u ‖2

=
∑

u ∈Strain
‖Wr max(vu , 0) + br − k̂u ‖2,

(16)

where ku and k̂u denote predicted and ground truth skill levels for user u, respectively.

5 DESIGN SKILL PREDICTION

In this section, we evaluate our model in the context of predicting digital design skill levels (the
ability to produce high quality art) of Photoshop users and extensively compare it with other
baseline features and algorithms.

5.1 Digital Design Skill Dataset

We use implicit supervision from the Behance platform,3 where millions of creative professionals
share their work and socialize with each other to train and evaluate the models. Specifically, we
regard the users who have at least one project featured as the positive users, and otherwise as the
negative users (artists uploaded their creative work to Behance, each of which was then evaluated
by the editorial group, and those with high quality were picked as featured projects). The perfor-
mance of each model is then evaluated using binary classification (against the extent to which
each model ranks positive users higher than negative users), which is a widely adopted practice in
evaluating regression models [8]. It is worth mentioning that the labels used in our current dataset
are not perfect as the users are only divided into two groups, and the intra-group user differences
are not taken into consideration. Collecting more fine-grained labels is left as future work.
We randomly select 68,456 Photoshop users who uploaded at least one project on Behance

by November 2015 and have at least one session recorded from 01/01/15 to 06/30/15, then the

3https://www.behance.net/.
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Table 1. Model Size of h-ATT-BiRNN

variables dimensionality

x , h,v , s (the representations) 500
vta ,vts (hidden layers) 100−→

h ,
←−
h (LSTM) 250

6-month action histories are included in our dataset. Among all users, 6,043 of them are identified
as positive. The dataset is divided into a training set that includes 57,136 users (5,043 positive and
52,093 negative), and a testing set that includes 11,320 users (1,000 positive and 10,320 negative).
In the training set, 500 positive users and 5,000 negative users are further held-out as a validation
set for the parameter selection. Note that, in this article, we hold a static view of users’ skill levels,
i.e., the time series evolution of the skills is not taken into account. We will investigate the time
effects in future work.

5.2 Model and Training Configurations

Given the nature of the collected dataset, we train h-ATT-BiRNN model with pairwise supervi-
sion, as discussed in Section 4.1. In our experiments, the size of the h-ATT-BiRNN model, i.e., the
dimensionality of each input/output, is shown in Table 1. All of the free parameters, if not speci-
fied explicitly, are trainable, and their sizes can be easily inferred from the information presented.
During training, we leverage two strategies to alleviate overfitting problems. (1) Dropout [38]. The
dropout operation randomly drops a set of units during training [38], and it is shown to effectively
address the overfitting problem in deep neural networks [38]. In our model, we add a dropout
operation to each representation, i.e., x , s , and v , and the outputs of the first hidden layer in the
attention modules, i.e.,Wtah + bta andWtsh + bts . We use 0.5 as the dropout rate. (2) L2 regular-
ization. We add the L2 loss of each parameter as an addition to the original loss (Equations (15)
and (16)), and the ultimate training loss is calculated as follows:

Lall = L + γ
∑

ω

ω2, (17)

whereω represents any trainable variable in our model. We select the best value of γ among 1e−6,
1e−5, 1e−4, and 1e−3 with the validation set. Apart from the afore-mentioned mechanisms, the
optimal number of training iterations (within a maximum limit= 4,000) is also determined through
validation.
We implement ourmodel using the Tensorflow framework [1] and conduct the training in a GPU

machine equipped with NVIDIA Titan X cards. The network is optimized via the Adam Optimiza-
tion algorithm [25] with the initial learning rate set to 0.001. To leverage the parallel computing
power of modern hardware, we train the network with the batch size of 100, i.e., 100 pairs of (pos-
itive user, negative user). We sample at most 20 sessions for each user and 100 consecutive actions
for each session in real time to augment training data [26]. During the validation and testing, such
a sampling is independently executed five times for a given user, and the final score is the average
of the five predictions, which potentially captures the length effect.

5.3 Baseline Algorithms

Different from the h-ATT-BiRNN model that learns a feature extractor and a classifier end-to-end,
previous approaches separate the process of the representation learning and the classifier training.
In general, the feature extractor is either hand-crafted or learned in an unsupervised manner, and
the classifier is trained with the features fixed. In this section, we present the baseline features and
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classifiers in Sections 5.3.1 and 5.3.2, respectively. In addition, to test the effectiveness of different
levels of the attention mechanisms, we compare h-ATT-BiRNN to three of its variants, which will
be discussed in Section 5.3.3.

5.3.1 Baseline Features. We consider three baseline features in this article as follows.

—Bag-of-n-grams [11, 28]. Bag-of-n-grams counts the number of times that each n-gram ac-
tion sequence is performed by the user, and the feature vector is normalized with L1 norm.
This is the standard usermodeling approach employed by the service providers. Specifically,
we consider uni-gram (uni), 1,2-gram (1,2) and 1,2,3-gram (1,2,3) features.

—bag-of-n-grams with tf-idf. One of the limitations of the standard n-gram feature is the in-
herently imbalanced usage frequency of different actions. For example, the actions open and
close may appear much more frequently than the action gaussian_blur. To compensate for
the frequency differences, we use tf-idf to re-weight the raw counts of n-grams.

—utilization-to-vector (util2vec). util2vec [43] is the state-of-the-art representation learning
model for the software users. As is described in Section 2.4, it models the sequential patterns
of actions using a distributed representation learning framework and is shown to accurately
capture users’ traits and preferences [43].

To make the features directly comparable to our model, we set the dimensionality of the util2vec
representation to 500, which is the same as the representation learned from h-ATT-BiRNN, i.e.,v .
The feature dimensionality for uni-gram, 1,2-gram and 1,2,3-gram are 1990, 55,431, and 111,583,
respectively.4

5.3.2 Baseline Classifiers. Under the pairwise learning-to-rank framework [20], we choose
three state-of-the-art pairwise ranking classifiers as the baselines.

—Rank Support Vector Machine (SVM) [20]. Given pairwise training data (di ,d j ) where di >
d j , RankSVM aims to learn a weight vectorω such that

ω�Φ(di ) > ω�Φ(d j ), (18)

where Φ is a kernel function. The model training is driven by the optimization problem
defined as follows:

min
ω,ξ

1

2
ω�ω +C

∑

(i, j )

ξi, j

subject to. ω� (Φ(di ) − Φ(d j )) ≥ 1 − ξi, j ,∀i, j
ξi, j ≥ 0,∀i, j

, (19)

where C is the regularization parameter, and we select its optimal value among 0.001, 0.01,
0.1, 1, 10, 100, 1000 using the validation set. In the real world settings, we have millions of
training pairs, and the non-linear kernels become intractable under such scenarios. There-
fore, we choose linear RankSVM in our experiments.

—Rank Logistic Regression (LR). Instead of using SVM that learns a maximum margin for the
ranking problem, RankLR leverages LR that maximizes the conditional likelihood of the
training pairs. Specifically, Given the training pairs presented above, the weight vector ω
is trained by minimizing the following objective function:

min
ω

1

2
ω�ω +C

∑

i, j

log(exp(−ω� (di − d j )) + 1), (20)

4We only retain frequent bi-grams and tri-grams so that the derived feature vectors are memory tractable.
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where the regularization parameterC is also selected from the same pool of candidate values
through validation.

—Rank Gradient Boosting Decision Tree (GBDT). Similar to SVM and LR, we additionally lever-
age the model-ensemble based GBDT [10] to learn the ranking function (with pairwise fea-
tures di − d j ). For each GBDT model, we incrementally learn 100 estimators with number
of leaves set to 31.

We implement the classifiers using libsvm [4], sklearn and LightBGM [23] libraries and con-
duct the training until they converge, i.e., the maximum value of the gradients is less than 1e−4.
To construct the training pairs, we experiment different sampling ratio, i.e., [number of positive
users]:[number of negative users], from 1:1 to 1:50 (for 1,2-gram and 1,2,3-gram features, sampling
ratios beyond 1:5 are memory-intractable).

5.3.3 Variants of h-ATT-BiRNN. We also compare h-ATT-BiRNN to the following three variants
to show the effectiveness of different attention modules:

—BiRNN. To investigatewhether the attentionmechanism is effective at all, the BiRNNvariant
does not include any attention module, i.e., the session representation takes the average of
the contextual representations (s = 1

T

∑
i hi ), and the user representation takes the average

of the session representations (v = 1
L

∑
i si ).

—a-ATT-BiRNN. To show the effectiveness of the action-level attention module ta , a-ATT-
BiRNNmaintains the attentions to actions but removes module ts from the proposed model.

—s-ATT-BiRNN. Similar to the variants presented above, s-ATT-BiRNNmaintains the session-
level attention module ts but removes the action-level attentions, i.e., ta .

5.4 Quantitative Results

For each method, including h-ATT-BiRNN and the baseline algorithms introduced above, we find
the best performed model in the validation set, i.e., the best regularization setting, and then report
its performance in the testing set. In our experiments, we measure the ranking performance of
each method using Area Under ROC Curve (AUC), as defined in Equation (21):

AUC =
1

U

U∑

u+=1

∑
u− δ (ku+ > ku− )

number of negative users in the testing set
, (21)

where U denotes the total number of positive users in the testing set. Inspired by previous re-
search [27] showing that initializing the input embedding, i.e., X , with the distributed representa-
tions learned from a larger corpus may improve the performance (e.g., initialing word embeddings
with word2vec outputs in natural language processing [27]), we conduct controlled experiments
for h-ATT-BiRNN and its variants. Specifically, we derive action representations (a2v) using the
word2vec framework [33] over usage histories from 3 million users (22 billion actions) and then
experiment each model in the following three settings: (1) initialize the action embeddings with
a2v and fix such embeddings during training; (2) initialize action embeddings with a2v but fine-
tune them, i.e., update the parameters, during training; and (3) randomly initialize the embeddings
and directly learn the representations from the pairwise supervision.
The comprehensive quantitative results are presented in Table 2, where, for previous ap-

proaches, we test the ranking performance for each combination of feature, classifier, and sampling

ratio. The results demonstrate that our model significantly outperforms the state-of-the-art and its
variants, and the hierarchical attention mechanism is effective in capturing signals that are sig-
nificant for predicting digital design skill levels. Specifically, we want to highlight the following
findings from Table 2.
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Table 2. Models’ Ranking Performances Evaluated in the Digital Design Skill Testing Set

P-N ratio 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10 1:50
uni-LR .669 .680 .678 .680 .679 .682 .683 .683 .682 .679 .682

uni-tfidf-LR .672 .675 .682 .684 .683 .682 .687 .682 .684 .683 .685
uni-SVM .672 .680 .679 .678 .679 .679 .677 .679 .679 .679 .681

uni-tfidf-SVM .674 .676 .682 .683 .683 .684 .683 .685 .684 .683 .686

uni-GBDT .702 .707 .706 .708 .708 .706 .715 .709 .707 .712 .708
uni-tfidf-GBDT .698 .703 .710 .698 .710 .700 .700 .703 .705 .704 .705
util2vec-LR .697 .698 .701 .701 .698 .702 .702 .700 .699 .701 .697
util2vec-SVM .691 .692 .698 .694 .696 .697 .692 .696 .694 .694 .694
util2vec-GBDT .670 .673 .684 .679 .693 .685 .688 .685 .688 .688 .686

P-N ratio 1:1 1:2 1:3 1:4 1:5
1,2-gram-LR .683 .693 .689 .689 .694

1,2-gram-tfidf-LR .696 .692 .694 .689 .696

1,2-gram-SVM .682 .688 .689 .694 .690
1,2-gram-tfidf-SVM .689 .688 .694 .694 .695

1,2-gram-GBDT .720 .712 .709 .712 .716
1,2-gram-tfidf-GBDT .711 .716 .711 .716 .713

1,2,3-gram-LR .685 .688 .692 .693 .698

1,2,3-gram-tfidf-LR .683 .692 .698 .698 .691
1,2,3-gram-SVM .684 .687 .693 .693 .695

1,2,3-gram-tfidf-SVM .694 .687 .697 .701 .695
1,2,3-gram-GBDT .705 .712 .713 .712 .716

1,2,3-gram-tfidf-GBDT .707 .709 .710 .712 .707

action embedding a2v, fixed a2v, fine-tuned random init
BiRNN .701 .703 .695

a-ATT-BiRNN .698 .702 .698
s-ATT-BiRNN .715 .719 .707
h-ATT-BiRNN .734 .733 .736

We present the area under curve (AUC) values, as defined in Equation (21). The standard mean of error (SEM) of

all methods are 0.008, which demonstrates the significance of the improvements (h-ATT-BiRNN over baselines). For

unigram and util2vec features, we present model performance with different positive-to-negative feature sampling

ratios from 1:1 to 1:50; for 1,2-gram and 1,2,3-gram features, because of the high dimensionality, we only experiment

ratios from 1:1 to 1:5. The best performed setting of each row is marked with bold font. Note that GBDT is an ensemble-

based method, and the performance of h-ATT-BiRNNmay be further improved by combining multiple model instances

with different initializations.

—Simply scaling up the training data does not help with the ranking. As shown in Table 2, the
performances of previous methods do not improve even with orders of magnitudes more
training data, i.e., the AUC value stays stable with the increasing sampling ratio. This phe-
nomenon reveals that previous methods are not limited by the amount of data for training,
but by their intrinsic capacity and expressive power in modeling noisy time-series traces.

— It takes two to tango, the interplay between two levels of attention mechanisms are essen-

tial to an effective model. The experimental results demonstrate that compared to baseline
approaches, BiRNN and a-ATT-BiRNN do not bring benefits to the prediction, and h-ATT-
BiRNN achieves the best performance. Intuitively, without session-level attention, trivial
sessions such as [open]-[crop]-[close] are likely to contaminate the user representation, and
without action-level attention, the session representations may be influenced by uninfor-
mative actions for common operations.
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Fig. 3. The values of attention variables (h-ATT-BiRNN) for a representative positive user in the digital design

skill testing set. The grey-scale of each block is proportional to the value of the corresponding attention

variable. (The attentions to sessions are presented vertically on the left, and the attentions to the actions are

presented horizontally).

—The best performance can be achieved without pretraining action embeddings. The results
presented in Table 2 show that the randomly initialized model achieves the same, if not
better performance with the ones initialized using a2v weights. Compared to util2vec that
requires training data from millions of users [43], our model achieves significantly better
performance with 50× less training data.

5.5 Qualitative Results

In addition to achieving a better ranking performance, our model also facilitates the interpretation
of the predictions. Specifically, our interpretations discover sequential patterns that are predictive
to the user’s digital design skill level. As described in Sections 3.1 and 3.2, attention weights αi and
βi are positive numbers, and

∑
i αi = 1,

∑
i βi = 1. Therefore, the weight assigned to each position

or session in the attention module reflects the fraction of attention that the prediction pays to the
corresponding component.
We present a sample interpretation of a representative positive user in our testing set, as shown

in Figure 3. The grey-scale of each block is proportional to the value of the corresponding attention
variable in the h-ATT-BiRNN model. In Figure 3, we show the model’s attentions to sessions and
actions, and we discuss detailed interpretations as follows.

—Only a small fraction of action sequences contribute to the prediction. As demonstrated in the
visualization, the attended sequences are sparse compared to the potentially large volume
of the user’s application usage history. In other words, one’s skill level is, to a large extent,
only determined by a small number of effective sequences.

—The usage contexts of actions are important for the prediction. As shown in Figure 3, although
the action [cmyk_color] from sequencesA andD gains a significant action-level weight, the
session that A belongs to, i.e., #3, receives the minimal attention, while the other session,
i.e., #18, captures much. Therefore, even for the same action, e.g., [cmyk_color], the context
in which it is used determines the role it plays in the final prediction.

—Action sequences accomplishing preliminary tasks may not be predictive. Intuitively, for soft-
ware applications, certain operations are preliminary andmastered by users across different
skill levels. Therefore, they are not indicative of the user’s expertise. Such a phenomenon is
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Fig. 4. Models’ performances (mean square error) in predicting users’ software skill levels. Baseline algo-

rithms are shaded with dots, and our method is shaded with slashes. The error bar represents the standard

error of mean, which demonstrates the significance of the improvements (h-ATT-BiRNN over baselines).

reflected in our experiment. As shown in Figure 3(E), the action sequence such as [move]-
[paste]-[delete_layer] captures fairly limited attention because the task that it accomplishes
is simple and basic.

—Sequences of advanced operations usually capture significant attentions. In contrast to those
for preliminary tasks, the actions leveraging advanced software features and performing
fine-grained operations usually capture a significant amount of attention in both levels. For
example, sequences B and C in Figure 3 contain advanced operations for image processing,
such as the noise manipulation (i.e., [add_noise]-[levels]-[select_canvas]) and blending (i.e.,
[master_opacity_change]-[blending_change]-[master_opacity_change]).

6 SOFTWARE SKILL PREDICTION

In addition to the digital design skill, we further evaluate our model’s performance in predicting
users’ software skill levels, i.e., proficiencies in manipulating professional tools. To conduct this
experiment, we collected a software skill dataset by surveying 8675 Photoshop users. Each user
was asked to self-disclose their expertise in Photoshop usage, from 1 (novice) to 5 (expert). We
split the dataset into 6175/1000/1500 for training, validation, and testing, respectively. As users’
ratings are inherently ordinal, as opposed to categorical, we trained the h-ATT-BiRNN model via
regression (i.e., with pointwise supervision in Section 4.2) and the same model configurations
(Section 5). For comparison, we train linear regression models for uni-gram, uni-gram+tfidf, 1,2-
gram, 1,2-gram+tfidf, 1,2,3-gram, 1,2,3-gram+tfidf and util2vec features and use them as baselines.
The training of baseline models follows the same procedure as h-ATT-BiRNN.
Themodels’ prediction performances aremeasured byMean Square Error (MSE), andwe present

the results in Figure 4. The empirical evidence demonstrates that our model significantly and
consistently outperforms baseline methods in predicting users’ software skills. Compared to the
digital design skill prediction task where the embedding based method (util2vec) does not bring
significant improvments, the software skill prediction benefits from the embedding approach, and
the util2vec feature significantly outperforms n-gram based features.
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Furthermore, the results in Figure 4 justify that the application usage traces are promising data
sources for user skill level predictions as h-ATT-BiRNN has much lower MSE than the majority
guess. Overall, the experiments on both datasets justify the merits of h-ATT-BiRNN in assessing
diverse user skills. We believe that our results have revealed the utilities and potentials of effective
attention mechanisms for accurate user modeling and understanding.

7 DISCUSSIONS

In this section, we discuss the limitations of our work and the generalizability of the proposed
h-ATT-BiRNN model.

7.1 Limitations

First, in the digital design skill dataset, we treat featured projects as positive signals for a user’s skill
level, which may overlook other factors that potentially contribute to the ground truth labels, such
as the fame of the artists and the general fashion trend. Second, users’ skill level may evolve over
time. Because of the limitation of available datasets, such a factor is not taken into consideration in
this article. Third, we do not incorporate the timestamp, action interval, action count, and session
length into the model, which may provide extra information regarding the user’s response time,
proficiency, and activity level. We leave these as future work.

7.2 Generalizability of h-ATT-BiRNN

Although the h-ATT-BiRNN is evaluated using application usage traces from Photoshop users,
the model is potentially applicable to other software and web services by redefining user actions,
e.g., a command in Autodesk [28] or a query on the web [41]. This is possible because the inputs
to the h-ATT-BiRNN model are abstractly defined tokens and are not restricted to the Photoshop
actions. In addition, we also demonstrate twoways of collecting training labels, i.e., through expert
judgments (digital design skills) and self-report (software skills), which can be easily adopted by
the industry.

8 CONCLUSION AND FUTURE WORK

In this article, we propose a bi-directional RNN model with hierarchical attention mechanism that
assesses software users’ skill levels by leveraging the sequential patterns and the heterogeneous
predictive power of the action series. The experimental results demonstrate its superior perfor-
mance and interpretative power in characterizing diverse user skills. Although we only conduct
evaluations with Photoshop users, we have reasons to believe that the technique studied has a
great potential to benefit other domains with time-series user interaction traces, e.g., web brows-
ing records (i.e., clicks, scrolling, and typing), Github pushes, gaming actions, and so on. In these
domains, we face similar scenarios where only some fractions of data traces are informative and
predictive to users’ traits. Therefore, customized algorithms can be built upon our attention model.
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