

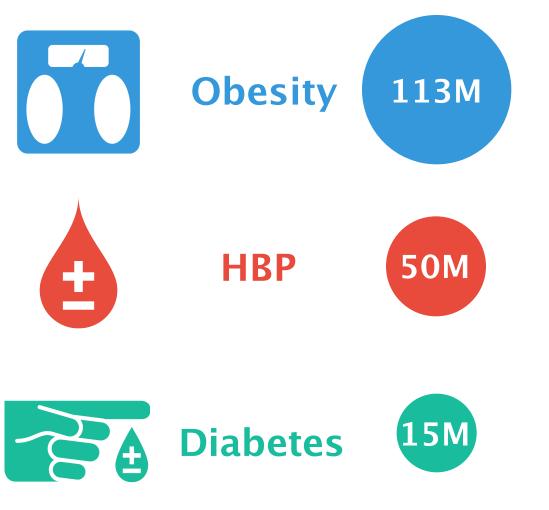
Bootstrapping Food Preferences Through an Adaptive Visual Interface

Longqi Yang, Yin Cui, Fan Zhang, JP Pollak, Serge Belongie, Deborah Estrin

MOTIVATION

Food preferences learning is important!

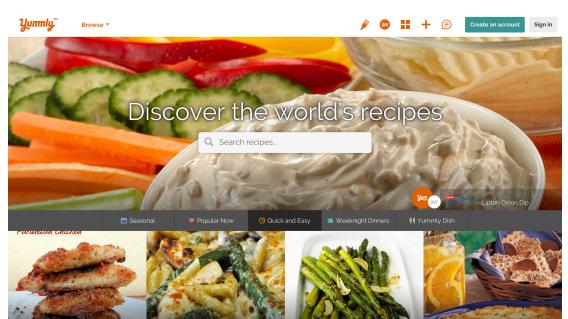
Health and Life



Unflavored Healthy diet recommendations are of NO Benefit!

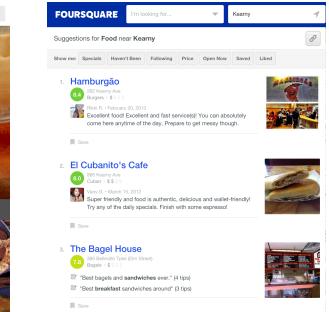
Social Media and Commerce





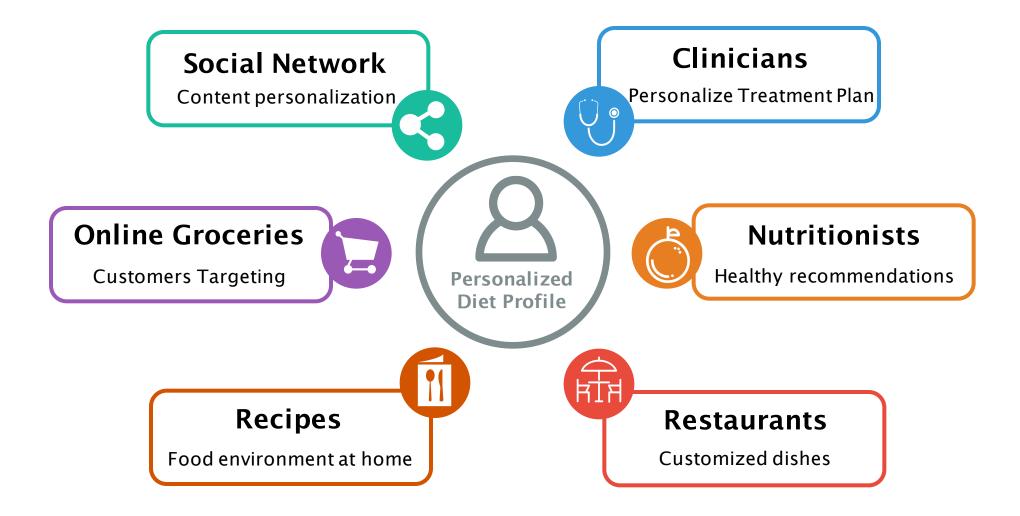
Yunnly,

FOURSQUARE



Personalized diet profile is the Key to user experience!

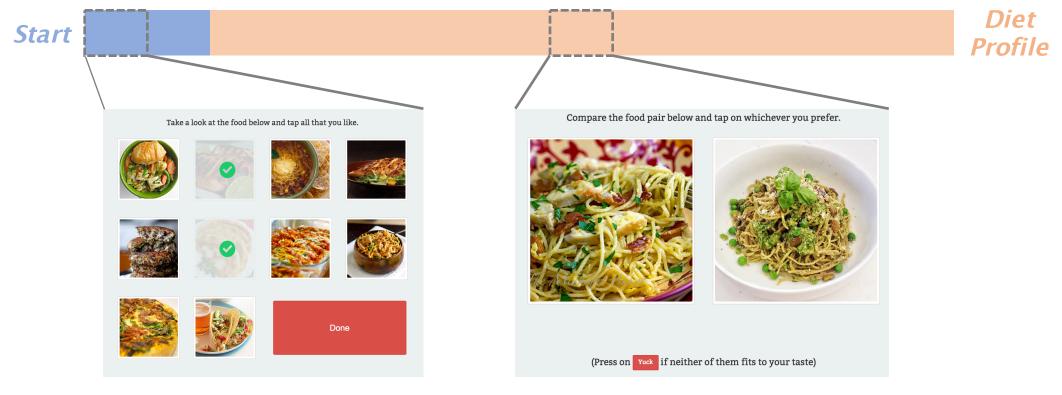
Our Vision



OUR SOLUTION

An adaptive visual interface

Exploration, *2 iters* **Exploration**-exploitation: <15 iters

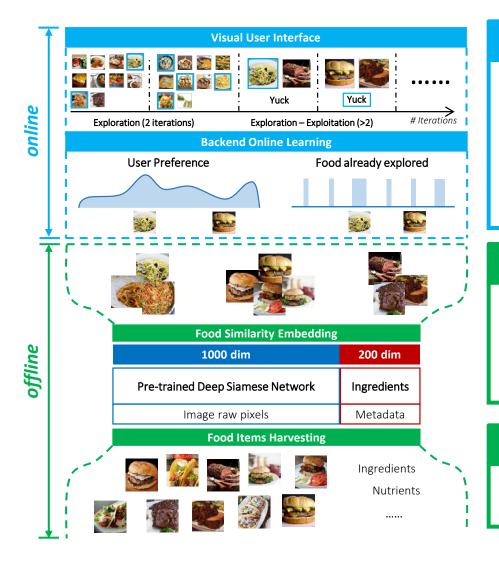


10 food items

Pairwise Comparison

- ✓ Efficient: completed within a minute.
- ✓ Visual interface: *low cognitive load, personalized and legible.*
- ✓ **Preference Elicitation:** *NO history required, NO ratings.*
- \checkmark Deep understanding of food images.
- ✓ Novel Online Learning Framework.

System Design



Online Learning

Online Learning framework (LE + EE)

- What images to present to the user?
- > How to update users' preferences?

Food Similarity Embedding

Users have close preferences for similar items

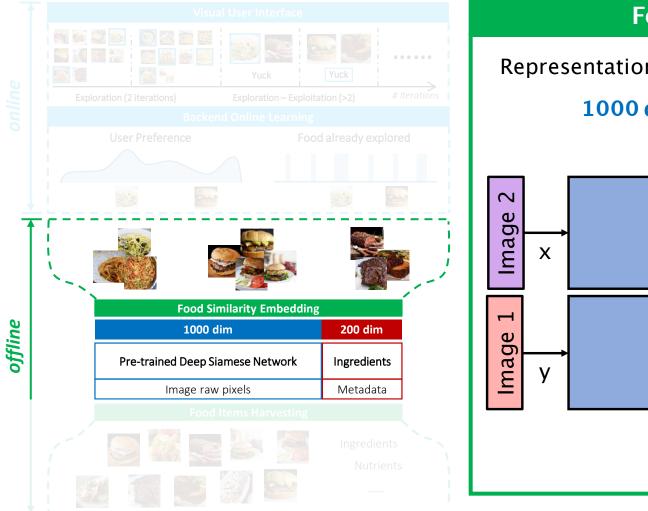
> Feature representation that can reflect similarities

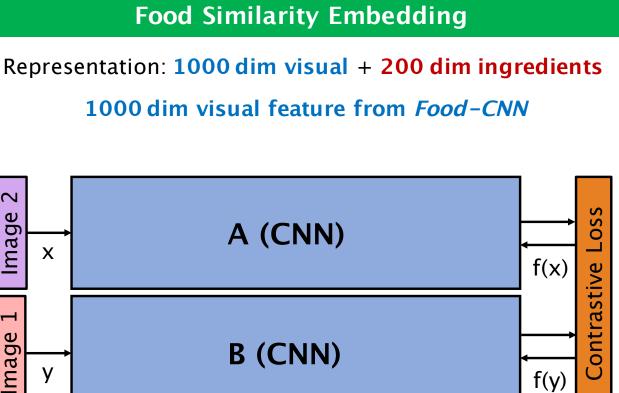
Food Items Harvesting

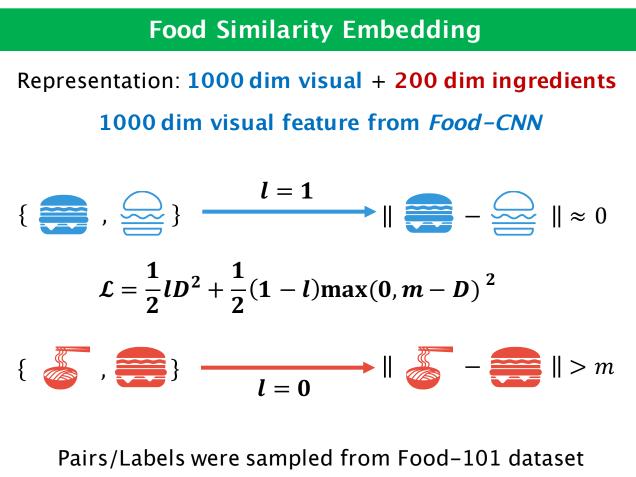
Food images and metadata.

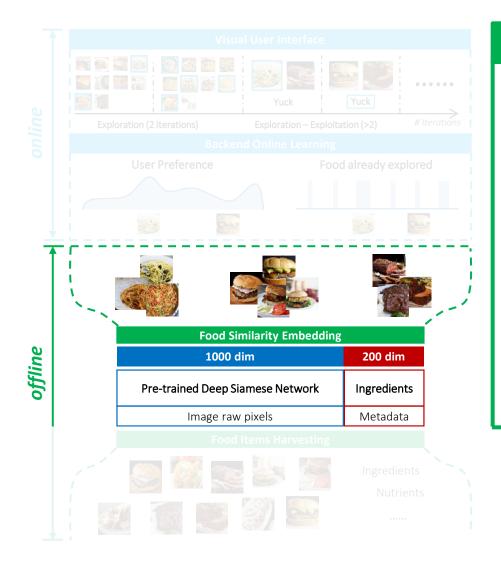
Food Items Harvesting

- > **12,000** food items from Yummly API.
- Images + Metadata (ingredients, nutrients etc.)
- > Outliers filtering, **10,028** items were used.









Food Similarity Embedding

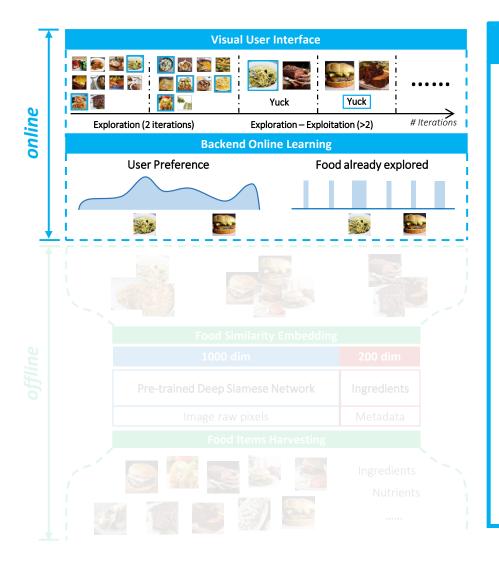
Representation: **1000 dim visual** + **200 dim ingredients**

200 dim ingredients feature

- > Lemmatization and preprocessing.
- Filtering: Top 200 ingredients.
- Feature vector: 0-1 vector denotes the existence of the ingredient.

Visual and ingredients feature vectors are normalized

separately with l_1 norm



Online Learning

Food preferences representation:

$$\boldsymbol{p^{t}} = \begin{bmatrix} p_0^{t}, p_1^{t}, \dots, p_{|\mathcal{S}|}^{t} \end{bmatrix} \quad \sum_{i} p_i^{t} = 1$$

Distribution of preferences over all food items in s p^t :updated preference vector after iteration t

Two tasks at each *iteration t:*

- User state update: update p^t based on the items presented and user's choices at *iteration t-1*.
- Images selection: Select a set of images to show at iteration t.

Online Learning

> User state update:

update p^t based on the items presented and user's choices at *iteration* t-1.

Users' selections — Image Labeling

Images selected — Label "+1"

Images not selected → Label "-1"

Images not presented — Label "0"

Online Learning

> User state update:

update p^t based on the items presented and user's choices at *iteration* t-1.

Online Learning

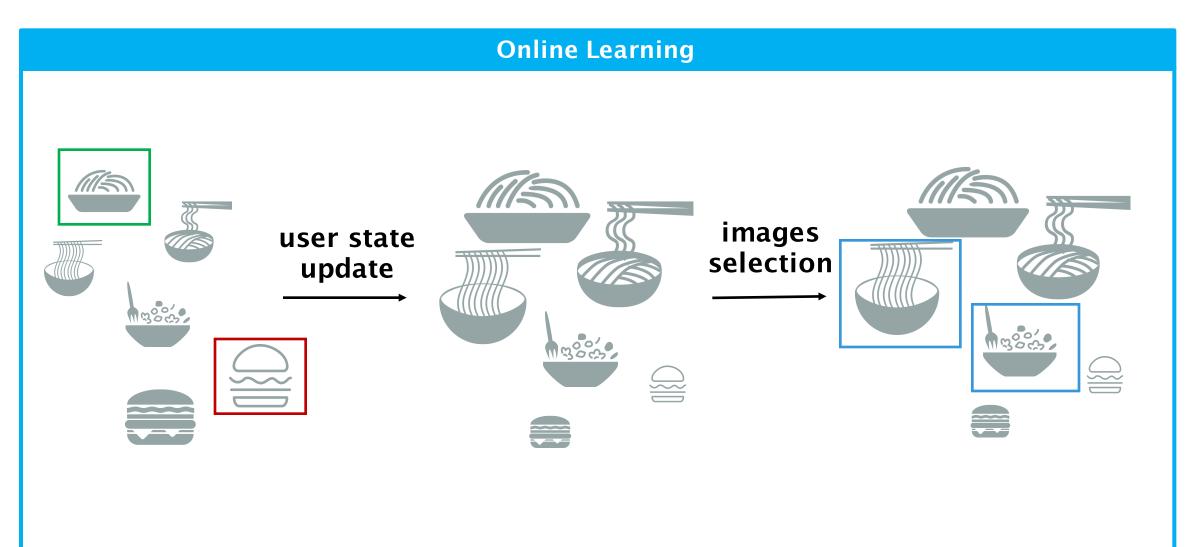
> Images selection: Select a set of images to show at *iteration t*.

Exploration and **E**xploration-exploitation Algorithm (**EE**)

Exploration (Ten images): $t \le 2$ K-means++

Exploration–exploitation (Two images): t > 2

One Item that user "prefer" (with high value of p) The other item that user hasn't explored.

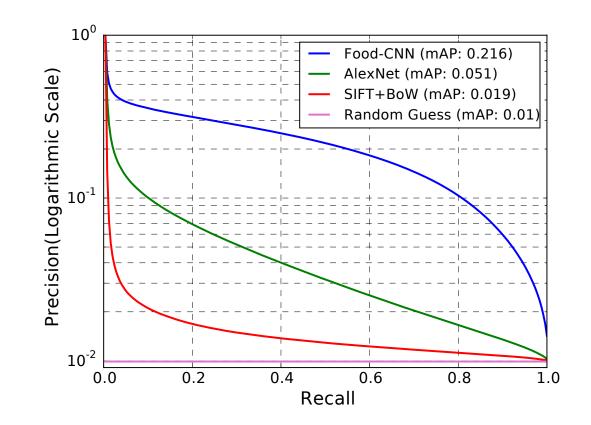


EXPERIMENTS AND USER STUDY Evaluation, findings and evidence

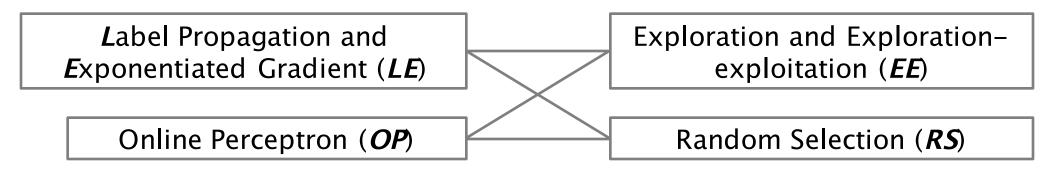
Experiments: *embedding*

Clustering performance of *Food-CNN* (Tested on *Food-101 dataset*).

 \succ K-neighbors of each test image, calculate the precision-recall for each K



- > 227 anonymous users.
- > Two factors were controlled in the study.
 - 1st. Algorithm:



2nd. Number of iterations: 5/10/15

- > Algorithm to test: *LE+EE*
- ➤ Trials: 1/3

Exploration Exploration-exploitation

One image from top 1% of preference value. (*unexplored*)

The other image from bottom 1% of preference value. (*unexplored*)

- > Algorithm to test: *LE+EE*
- ➤ Trials: 2/3

Exploration Exploration-exploitation

PlateClick (5 iters) Testing (10 iters)

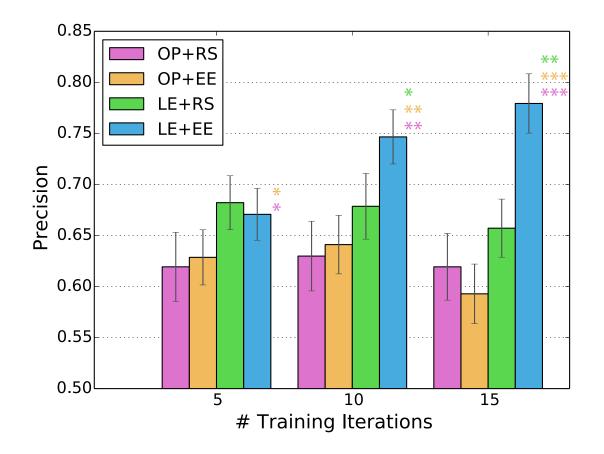
One image from top 1% of preference value. (*unexplored*) The other image from bottom 1% of preference value. (*unexplored*)

- > Algorithm to test: *LE+EE*
- ≻ Trials: *3*/3

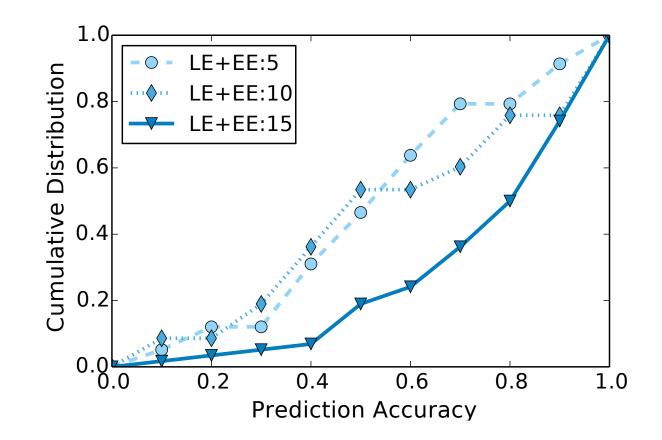
Exploration Exploration-exploitation

One image from top 1% of preference value. (*unexplored*) The other image from bottom 1% of preference value. (*unexplored*)

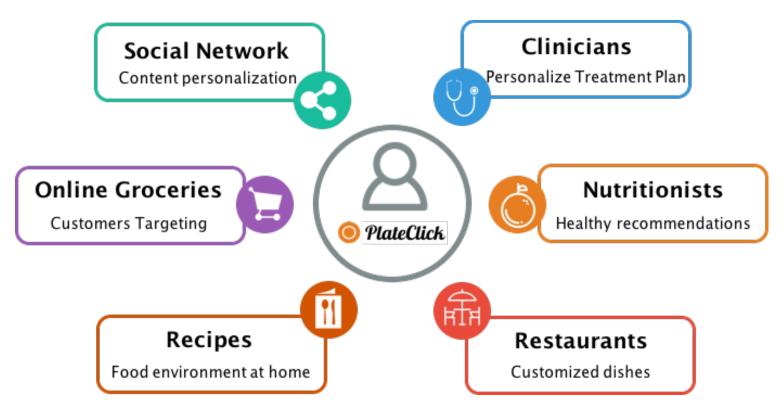
Prediction accuracy under different algorithms and number of iterations



Cumulative distribution of prediction accuracy for LE+EE algorithm



Conclusions and Future work



> Engine for food preferences learning.

> Applicable to general human-in-the-loop problems.

For more information:

http://www.cs.cornell.edu/~ylongqi

http://smalldata.io/

ylongqi@cs.cornell.edu

Øylongqi

Try it out online:

http://bit.ly/plateclick

Cornell University Department of Computer Science the small data lab

