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ABSTRACT
Food preference learning is an important component of well-
ness applications and restaurant recommender systems as it
provides personalized information for effective food target-
ing and suggestions. However, existing systems require some
form of food journaling to create a historical record of an in-
dividual’s meal selections. In addition, current interfaces for
food or restaurant preference elicitation rely extensively on
text-based descriptions and rating methods, which can im-
pose high cognitive load, thereby hampering wide adoption.
In this paper, we propose PlateClick, a novel system that

bootstraps food preference using a simple, visual quiz-based
user interface. We leverage a pairwise comparison approach
with only visual content. Using over 10,028 recipes collected
from Yummly, we design a deep convolutional neural net-
work (CNN) to learn the similarity distance metric between
food images. Our model is shown to outperform state-of-
the-art CNN by 4 times in terms of mean Average Preci-
sion. We explore a novel online learning framework that is
suitable for learning users’ preferences across a large scale
dataset based on a small number of interactions (≤ 15). Our
online learning approach balances exploitation-exploration
and takes advantage of food similarities using preference-
propagation in locally connected graphs.
We evaluated our system in a field study of 227 anony-

mous users. The results demonstrate that our method out-
performs other baselines by a significant margin, and the
learning process can be completed in less than one minute.
In summary, PlateClick provides a light-weight, immersive
user experience for efficient food preference elicitation.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous; I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
The problem of capturing and understanding people’s food

preferences has attracted substantial attention from indus-
try (e.g., Yelp and Foursquare) and academia [12,13,17,38].
Food preferences guide our diet choices [32] which in turn
have a strong effect on our personal health and social lives
[32]. A recipe advice system [13, 27] could more effectively
coach users to prepare healthier meals at home if alternative
food suggestions provided were appealing to them. This is
important because healthy diet recommendations are of no
benefit if users don’t adopt them. Another application area
that could leverage user preferences is commercial restau-
rant recommender systems like Yelp and Foursquare. The
recommendations will be more accurate and personalized if
the system output is tuned to the user’s diet profile. How-
ever, food preference is notoriously difficult to learn because
of its dependence on context (e.g., evolving personal goals).
Existing systems and algorithms suffer from several limi-
tations that interfere with efficient learning and wide user
adoption:

Data sparsity. Current food preference learning systems
require longitudinal records of the meals that users have
eaten [12, 13, 17, 38]. These historical data traces [11] typi-
cally come from location sensing, which is not always related
to food preference, or burdensome food journaling, which is
often abandoned after short periods of adoption [9]. As a
result, data points are too sparse to provide enough food
preference information.

High cognitive load. Preference elicitation [29], in which
users are asked to rate different food items explicitly (on a
scale from 1 to 5) [12, 17], is an approach that is comple-
mentary to the above longitudinal methods. While text-
based instruments and rating methods [5, 10, 35, 43] effec-
tively address the cold-start problem [23, 34, 42] in movie
recommender systems, the counterpart for food preference
is especially hard for users [9] as it is time consuming [28]
and presents a high cognitive load [8].

Insufficient Visual Understanding. Traditional meth-
ods mainly use food tags and other metadata for learning
tasks [12,17]. However, as people’s diet decisions are greatly
influenced by visual appearances of meals [9], analysis of im-
age features can provide a valuable signal for diet profiling
and food preference elicitation.

In this paper, we propose PlateClick, a novel system
for efficient food preference elicitation using a sim-
ple, visual quiz-based user interface. PlateClick allevi-
ates the limitations mentioned above with deep understand-
ing of food images and a user-friendly visual interface. To



Figure 1: PlateClick system pipeline. The system is
divided into two major parts: Offline preprocessing,
which is surrounded by green dotted line and On-
line preference learning, which is surrounded by blue
dotted line.

the best of our knowledge, this is the first system and algo-
rithm that learns users’ food preferences through real-time
interactions without any requirements of diet history. We
developed this system as a lightweight, easily accessible web
service that can be completed within 60 seconds. Through a
field study with 227 anonymous users in the wild, we show
that our system is able to predict the food items that a user
likes/dislikes with high accuracy. The system pipeline of
PlateClick is shown in Fig. 1, which consists of offline and
online stages with several components, as follows.
Food Items Harvesting. We pulled 12, 000 main dish

recipes with their images and metadata (ingredients, nutri-
ents, tastes, etc.) via the Yummly API 1 and filter out image
outliers. The final dataset has 10, 028 food items across var-
ious cuisines (American, Asian, Mexican, Italian, etc.)
Food Similarity Embedding. In order to tame a large

number of food items and facilitate image understanding,
we learn the image similarity distance metric based on la-
bels from the Food-101 dataset [4] using a deep Siamese
network [7]. With the trained network, we extract 1,000
dim visual features for each food image. The method we
propose improves the performance of other state-of-the-art
visual feature extraction approaches. We append 200 dim
ingredients features to visual features, resulting in an em-
bedding of the food items into a 1,200 dim space in which
similar items are nearby one another and dissimilar ones are
farther away.
Visual User Interface. The process of our food pref-

erence elicitation consists of several iterations. We explore
the advantages of image picking and pairwise comparison in
interface design, both of which offer a potentially improved

1http://developer.yummly.com

user experience [8,28]. In each of the first two iterations, we
present ten images and users are asked to tap on all the ones
they like. In each subsequent iteration, we present a pair of
food images and ask users either to tap on whichever they
prefer or click yuck, indicating a preference for neither.

Backend Online Learning. The backend of our system
consists of a novel online learning algorithm that explores
the similarity between food items. Our algorithm is inspired
by label propagation [44] in locally connected graphs and
the Exponentiated Gradient Algorithm for bandit settings
(EXP3) [2]. We demonstrate that this algorithm is more
effective in our proposed workflow than other baselines.

Compared to traditional food preference learning systems,
our work offers 3 major contributions and points of novelty.

• We get rid of the requirements for users’ historical diet
records and completely bootstrap food preference from
scratch. This design enables context aware preference
learning that adapts preference information in various
conditions.

• We propose a novel image similarity measure that sig-
nificantly outperforms state-of-the-art algorithms. By
leveraging an improved embedding of food items, we
simplify the UI by making it completely image based.
This offers opportunities for personal interpretation
[28] and can provide an immersive experience with per-
sonalized, adaptive information [9].

• We design a novel online learning algorithm that can
support real-time elicitation of food preference from
modest number (≤ 15) of pairwise comparisons on a
large scale food image database (> 10, 000 instances).
The pairwise comparison method is known to have
lower cognitive load [15], and our system is thus more
user-friendly.

We envision that PlateClick, a light-weight and efficient food
preference elicitation system, will provide a personalized
user experience capable of fueling a wide range of appli-
cations in domains including health care, diet planning, and
restaurant recommendation.

2. RELATEDWORK
Collaborative Filtering. As one of the most popular al-

gorithms adopted in current recommender systems, collabo-
rative filtering (CF) [18] has been widely studied in a variety
of applications. The main idea of this method is to predict
and learn a user’s preferences based on similarity measures
such as user-based CF [18] and item-based CF [33]. It has
also been shown that latent factor models [21] and matrix
factorization [31] are promising to predict users’ ratings for
previously unobserved items.

A major limitation of collaborative filtering is its require-
ment for historical user data. Although several techniques
have been proposed to address the cold-start problem [23,
42], the performance of CF is still largely dependent on the
number of active users, availability of contextual informa-
tion [42] and observed ratings for different items [23]. In
the case of food preference learning, it’s typically difficult to
get access to a user’s diet history since meal journaling is
burdensome [9]. Therefore, in the design of PlateClick, we
don’t assume any prior knowledge of the users.

Preference elicitation. To alleviate the cold-start prob-
lem mentioned above, several models of preference elicitation
have been proposed in recent years. The most prevalent
method of elicitation is to train decision trees to poll users



in a structured fashion [10,14,30,35,45]. These questions are
either generated in advance and remain static [30] or change
dynamically based on real-time user feedback [10,14,35,45].
In addition, another previous work explores the possibility
of eliciting item ratings directly from the user [5, 43]. This
process can either be carried at item-level [43] or within-
category (e.g., movies) [5].
The preference elicitation methods we mentioned above

largely focus on the domain of movie recommendations [5,
30, 35, 43] and visual commerce [10] (e.g., cars, cameras)
where items can be categorized based on readily available
metadata. When it comes to real dishes, however, categor-
ical data (e.g., cuisines) and other associated information
(e.g., cooking time) possess a much weaker connection to a
user’s food preferences. Through the design of PlateClick,
we leverage the visual representation of each meal so as to
better capture the process through which people make diet
decisions.
Food preference learning system. Most existing food

preference learning approaches are hybrids of historical record
mining and rating elicitation [12,13,17,38,40]. To avail one-
self of these systems to promote healthy eating, one is often
required to record daily meal intake and provide this infor-
mation as a bootstrapping resource to a diet recommender
system [12,13,38]. After that, several food items are selected
for display based on matching scores between meal metadata
and the user’s previous choices. For each item provided, the
user is prompted to enter a rating on a scale from 1 to 5.
To the best of our knowledge, no existing systems take vi-

sual features – arguably one of the most important factors in
assisting people’s daily food choices [9] – into consideration.
Additionally, the most common methods adopted in food
preference elicitation (i.e. text based interface and numerical
rating scale) impose a high cognitive load on the user [8] and
are susceptible to noisy and unreliable responses. Inspired
by elicitation strategies in other domains (e.g. crowdsourc-
ing [6], housing [15]), we propose a simplified, purely visual
interface that presents users with simple pairwise compar-
isons. Through our field study with anonymous users, we
show that this lightweight interface can promote efficient
food preference learning.

3. METADATA PREPROCESSING
For 12, 000 main dishes recipes pulled from Yummly API,

we filter out entries with unrelated (or missing) image con-
tent, resulting in a final dataset S containing 10, 028 food
items, i.e., S = {s1, s2, ..., s10028}. As illustrated in Fig.1,
apart from visual features, we append 200 dim ingredient
features as the representation of each food image. The ingre-
dient feature vector is calculated according to the following
pre-processing steps:
1. Keyword extraction and lemmatization. For each ingre-

dient appearing in the metadata, we extract keywords from
its description and apply lemmatization; see Table 1.
2. Aggregation and Filtering. We aggregate and count

the occurrences of each ingredient appearing in our dataset.
We select top 200 most frequent ingredients 2 as our list of
ingredient features.
3. Feature Vector Calculation. For each food item si ∈ S,

its dingr = 200 dim normalized ingredient feature vector
gsi = [gsi1 , ..., gsidingr

] is finally calculated based on whether

2We will incorporate more sophisticated methods such as
tf-idf and homonyms/synonyms handling in the future.

ingredient j appears in food item si’s ingredient list Ingr{si},
as Equation (1) shows:

gsij =

{
1 / |Ingr{si}| : j ∈ Ingr{si}
0 : j /∈ Ingr{si} (1)

original ingredient filtered ingredient

low moisture mozzarella mozzarella

fresh mozzarella mozzarella

less sodium beef broth beef broth

lower sodium beef broth beef broth

chicken eggs egg

soft-boiled egg egg

Table 1: Keyword extraction and lemmatization.

4. FOOD SIMILARITY EMBEDDING

4.1 Training the Deep Siamese Network
Recent advances in similarity metric learning with Deep

Convolutional Neural Networks (CNNs) have resulted in
breakthroughs in areas including Face Verification [37], Im-
age Retrieval [41], Geo-localization [24] and Product De-
sign [3]. The CNN architectures in these works are based on
the Siamese Network [7], which is trained on a large number
of paired inputs of similar and dissimilar examples. In light
of the prior efforts mentioned above, we adopt this approach
to generate a distance embedding for meals.

The proposed CNN architecture (Food-CNN) is illustrated
in Fig. 2. The inputs of Food-CNN are a pair of color food
images x, y ∈ S, each of size 227× 227× 3. Then, each im-
age proceeds through an identical feature extraction CNN
containing several layers from Convolution to Batch Nor-
malization. Finally, the outputs of the last layer are used
as their low-dimensional feature embeddings f(x), f(y). The
architecture from the first Convolution layer to the last Fully
Connected layer (i.e. layers in dashed line bounding box in
Fig.2) is the same as the architecture that achieved state-of-
the-art image classification performance on ImageNet [22].
For each of the layers, the numbers at the top specify its
window size and step size ( Convolution and Max Pooling);
the numbers at the bottom specify the size of its output
feature map. For example, the first convolution layer takes
a 227 × 227 × 3 color image from image data layer as the
input and convolves it with 96 filters. Each filter has a size
of 11 × 11 × 3 and convolves the image on a grid with step
size 4× 4. In this sense, the output of the first Convolution
layer is a 55 × 55 feature map with 96 channels. We add a
final Batch Normalization layer to normalize the 1000 dim
feature vector so that each dimension has zero mean and
unit variance within a training batch. Batch Normalization
provides a faster convergence rate and higher accuracy in
practice [19].

Our goal of Food-CNN is to learn a low dimensional fea-
ture embedding that pulls similar food items together and
pushes dissimilar food items far away. Specifically, we want
f(x) and f(y) to have small distance (close to 0) if x and
y are similar items; otherwise, they should have distance
larger than a margin m. Therefore, we choose Contrastive
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Figure 2: Food-CNN architecture for supervised food similarity distance metric learning.

Figure 3: Contrastive Loss function with m = 1.

Loss proposed in [16] as the loss function to optimize Food-
CNN, which can be expressed as:

L(x, y, l) = 1

2
lD2 +

1

2
(1− l)max (0,m−D)2 (2)

where similarity label l ∈ {0, 1} indicates whether the input
pair of food items x, y are similar or not (l = 1 for similar,
l = 0 for dissimilar), m > 0 is the margin for dissimilar items
and D = ‖f(x)− f(y)‖2 is the Euclidean Distance between
f(x) and f(y) in embedding space.
As illustrated in Fig. 3, Contrastive Loss function exactly

matches our goal. Minimizing the loss in Eqn. (2) pulls sim-
ilar food images closer and pushes dissimilar ones apart as it
penalizes similar pairs by their distances quadratically and
dissimilar pairs by their squared differences of the distances
to the margin m if they are smaller than m.
Training a deep Siamese Network usually requires huge

amount of training data that can’t fit in memory. To address
this problem, we adopt Nesterov’s Accelerated Gradient De-
scent method [26] with Momentum algorithm [36]. We use
back-propagation to compute the gradient of the loss with
respect to the parameters of each layer. Suppose we have
an n-layer CNN:

f(x) = gn (gn−1 (. . . gi(. . . g1(x) . . . ))) (3)

where gi(.) represents the computation of i-th layer (e.g.,
convolution, pooling etc.), x, y and f(x), f(y) represent the
input and output pairs of the Siamese Network, respec-
tively. We adopt function L(.) to calculate the loss of the
input pairs x, y as L (x, y, l). To minimize loss by updat-
ing parameters Wi of i-th layer, we need the gradient of

the loss with respect to Wi:
∂L(.)
∂Wi

= ∂L(.)
∂gi
× ∂gi

∂Wi
. Using

back-propagation, ∂L(.)
∂gi

can be calculated with the chain

rule: ∂L(.)
∂gi

= ∂L(.)
∂gn

× ∂gn(.)
∂gn−1

× · · · × ∂gi+1(.)

∂gi
. Therefore,

for k-th layer gk(.), we only need to calculate ∂gk(.)
∂gk−1

and
∂gk(.)
∂Wk

. We use the implementation of gradient descent and

back-propagation in Caffe [20], an open source deep learning
framework.

Since the food dataset S pulled from Yummly doesn’t in-
clude categorical similarity annotations, we trained Food-
CNN on the Food-101 dataset [4], which is the largest food
image dataset so far and contains 101 food categories and
101, 000 food images. We sampled 75, 750 same pairs and
757, 500 different pairs from the training set to train our
Food-CNN.

4.2 Feature Extraction
After the training process, we use the pre-trained Food-

CNN to extract visual features from images in our dataset.
For each item si ∈ S, we feed the food image to pre-trained
feature extraction layers (i.e. layers in blue dashed line
bounding box in Fig. 2) and get the feature vector ṽsi . We

normalize ṽsi so that it has unit �1 norm: vsii = ṽsii /(
∑dvis

i=1 |ṽsii |),
where ṽsi = [ṽsi1 , . . . , ṽsidvis

]T and vsi = [fsi
1 , . . . , fsi

dvis
]T are

the feature vectors before and after normalization, respec-
tively; dvis = 1, 000 is the dimension of visual features.

We then concatenate the visual features vsi with ingre-
dient features gsi to create a 1,200 dim feature embedding
fsi = [vsi , gsi ] for each food item si ∈ S.
5. ONLINE PREFERENCE LEARNING

5.1 Online Settings and Framework
As discussed in previous sections, each food item si ∈
S has a 1,200 dim feature vector fsi in the embedding
space. Building upon the offline feature extraction results,
we model the interaction between user and our backend sys-
tem at iteration t, (t ∈ R+, t = 1, 2, ..., T ) as Fig. 4 shows.
The symbols that will be used in our algorithms are defined
as follows:
Kt : Set of food items that are presented to user at itera-

tion t (K0 = ∅). ∀k ∈ Kt, k ∈ S;
Lt−1 : Set of food items that user prefer(select) among
{k|k ∈ Kt−1}. Lt−1 ⊆ Kt−1;

pt = [pt1, ..., p
t
|S|] : User’s preference distribution on all

food items si(i = 1, ..., | S |), where ‖pt‖1 = 1. p0 is initial-
ized as p0i = 1

|S| ;
Bt : Set of food images that have been already explored

until iteration t (B0 = ∅). Bi ⊆ Bj(i < j);
Based on the workflow depicted in Fig. 4, for each iter-

ation t, backend system updates vector pt−1 to pt and set



Figure 4: User-system interaction at iteration t.

Bt−1 to Bt based on users’ selections Lt−1 and previous im-
age set Kt−1. After that, it decides the set of images that
will be immediately presented to the user (i.e., Kt). Our
food preference elicitation framework can be formalized in
Algorithm. 1. The core procedures are update and select,
which will be described in the following subsections for more
details.

Algorithm 1: Food Preference Elicitation Framework

Data: S = {s1, ..., s10028}, F = {fs1 , ...,fs10028}
Result: pT

1 B0 = ∅, K0 = ∅, L0 = ∅, p0 = [ 1
|S| , ...,

1
|S| ] ;

2 for t← 1 to T do
3 [Bt,p

t]← update(Kt−1, Lt−1, Bt−1, p
t−1) ;

4 Kt ← select(t, Bt, pt) ;
5 if t equals T then
6 return pT

7 else
8 ShowToUser(Kt) ;
9 Lt ← WaitForSelection() ;

5.2 User State Update
Based on user’s selections Lt−1 and the image set Kt−1,

the update module renews user’s state from {Bt−1,p
t−1}

to {Bt,p
t}. Our intuition and assumption behind following

algorithm design is that people tend to have close preferences
for similar food items in 1,200 dim space.

5.2.1 Preference vector pt

Our strategy of updating preference vector pt is inspired
by Exponentiated Gradient Algorithm in bandit settings
(EXP3) [2]. Specifically, at iteration t, each pti in vector
pt is updated by:

pti ← pt−1
i × e

βu
t−1
i

p
t−1
i (4)

where β is the exponentiated coefficient that controls update
speed and ut−1 = {ut−1

1 , ..., ut−1
|S| } is the update vector used

to adjust each preference value.
In order to calculate update vector u, we formalize user’s

selection process as a data labeling problem [44] where for
si ∈ Lt−1, label yt−1

i = 1 and for sj ∈ Kt−1\Lt−1, label
yt−1
j = −1. Thus, the label vector yt−1 = {yt−1

1 , ..., yt−1
|S| }

provided by user is:

yt−1
i =

⎧⎨
⎩

1 : si ∈ Lt−1

0 : si 
∈ Kt−1

−1 : si ∈ Kt−1\Lt−1

(5)

For update vector u, we expect that it is close to la-
bel vector y but with smooth propagation of label values

sa si

sb

yi
a = 0 yi

i = 1/− 1

yi
b = 0

||fsi − fsa || > δ

||fsi − fsb || ≤ δ

Figure 5: Locally connected graph with item si.

to nearby neighbors (For convenience, we omit superscript
that denotes current iteration). The update vector u can
be regarded as a soften label vector compared with y. To
make the solution more computationally tractable, for each
item si with yi 
= 0, we construct a locally connected undi-
rected graph Gi as Fig. 5 shows: ∀sj ∈ S, add an edge
(si, sj) if ‖fsi − fsj‖ ≤ δ (δ = 35 in our implementation).
The labels yi for vertices sj in graph Gi are calculated as
yi
j = 0(j = 1, . . . , |S| \ i), yi

i = yi.

For each locally connected graph Gi, we fix ui
i value as

ui
i = yi

i and propose the following regularized optimization
method to compute other elements (∀ui

j , j 
= i) of update

vector ui , which is inspired by the traditional label prop-
agation method [44]. Consider the problem of minimizing
following objective function Q(ui):

min
ui

|S|∑
j=1,j �=i

wij(y
i
i − ui

j)
2 +

|S|∑
j=1,j �=i

(1− wij)(u
i
j − yi

j)
2 (6)

In Eqn. (6), wij represents the similarity measure between
food item si and sj :

wij =

{
e
− 1

2α2 ‖fsi−f
sj ‖2

: ‖fsi − fsj‖ ≤ δ
0 : ‖fsi − fsj‖ > δ

(7)

where α2 = 1
|S|2

∑
i,j∈S‖fsi − fsj‖2.

The first term of the objective functionQ(ui) is the smooth-
ness constraint as the update value for similar food items
should not change too much. The second term is the fit-
ting constraint, which makes ui close to the initial labeling
assigned by user (i.e. yi). However, unlike [44], in our al-
gorithm, the trade-off between these two constraints is dy-
namically adjusted by the similarity between item si and sj
where similar pairs are weighed more with smoothness and
dissimilar pairs are forced to be close to initial labeling.

With Eqn. (6) being defined, we can take the partial
derivative of Q(ui) with respect to different ui

j as follows:

∂Q(ui)

ui
j,j �=i

= 2wij(u
i
j − ui

i) + 2(1− wij)(u
i
j − yi

j) = 0 (8)

As ui
i = yi

i , then:

ui
j = wiju

i
i = wijy

i
i(j = 1, 2, ..., | S |) (9)

After all ui are calculated, the original update vector u
is then the sum of ui, i.e. u =

∑
i u

i. The pseudo code
for the algorithm of updating preference vector is shown in
Algorithm.2 for details.



5.2.2 Explored food image set Bt

In order to balance the exploitation and exploration in
image selection phase, we maintain a set Bt that keeps track
of all similar food items that have already been visited by
user and the updating rule for Bt is as follows:

Bt ← Bt−1 ∪ {si ∈ S|minsj∈Kt−1‖fsi − fsj‖ ≤ δ} (10)

With the algorithms designed for updating preference vec-
tor pt and explored image set Bt, the overall functionality
of procedure update is shown in Algorithm.2.

Algorithm 2: User state update Algorithm - update

1 Function update(Kt−1,Lt−1,Bt−1,p
t−1)

input : Kt−1,Lt−1,Bt−1,p
t−1

output: Bt,p
t

2 u = [0, ..., 0],Bt = Bt−1,p
t = pt−1

3 for i← 1 to | S | do
4 // preference update

5 for sj in Kt−1 do

6 ui ← ui + (−1) (sj∈Lt−1)−1wij

7 pti = pt−1
i e

βui

p
t−1
i

8 // explored image set update

9 if min(‖fsi − fsj‖, ∀sj ∈ Kt−1) ≤ δ then
10 Bt ← Bt ∪ {si}
11 // normalize pt s.t.‖pt‖1 = 1

12 normalize(pt)

Algorithm 3: Kmeans++ Algorithm for Exploration

1 Function k-means-pp(S, n)
input : S, n
output: Kt

2 Kt=random(S)
3 while | Kt |< n do
4 prob ← [0, ..., 0]|S|
5 for i← 1 to | S | do
6 probi ← min(‖fsi − fsj‖2|∀sj ∈ Kt)

7 sample sm ∈ S with probability ∝ probm

8 Kt ← Kt ∪ {sm}

5.3 Images Selection
After updating user state, the select module then picks

food images that will be presented in the next round. In or-
der to trade-off between exploration and exploitation in our
algorithm, we propose different images selection strategies
based on current iteration t.

5.3.1 Food Exploration
For each of the first two iterations, we select ten differ-

ent food images by using K-means++ [1] algorithm, which
is a seeding method used in K-means clustering and can
guarantee that selected items are evenly distributed in the
feature space. For our use case, K-means++ algorithm is
summarized in Algorithm.3.

5.3.2 Food Exploitation-Exploration
Starting from the third iteration, users are asked to make

pairwise comparisons between food images. To balance the
Exploitation and Exploration in our algorithm design, we
always select one image from the area with higher preference
value based on current pt and another one from unexplored
area, i.e. S\Bt. (Both selections are random in a given
subset of food items). With above explanations, the image
selection method we propose in this application is shown in
Algorithm 4.

Algorithm 4: Images Selection Algorithm - select

1 Function select(t,Bt,pt)

input : t,Bt,pt

output: Kt

2 Kt = ∅
3 if t ≤ 2 then
4 Kt ← k-means-pp(S, 10) // K-means++

5 else
6 // 99th percentile (top 1%)

7 threshold ← percentile(pt, 99)

8 topSet ← {si ∈ S|pti ≥ threshold}
9 Kt ← [random(topSet), random(S\Bt)]

6. EXPERIMENTAL EVALUATION

6.1 Food Similarity Embedding
We examine and evaluate the clustering performance of

Food-CNN model on Food-101 [4] dataset, where each image
is tagged with a categorical label. We first extract 1,000 dim
visual feature for each food image in the test set. After that,
we explore k, where k = 1, 2, . . . , N (N is the size of the test
set), nearest neighbors of each food image and calculate the
Precision and Recall values for each k:

Suppose N i
k is the set of k nearest neighbors of item i

under category Ci, then the Precision and Recall values are:

Precision =
| {j|∀j ∈ N i

k ∧ j ∈ Ci} |
| N i

k |
(11)

Recall =
| {j|∀j ∈ N i

k ∧ j ∈ Ci} |
| Ci | (12)

In order to measure the overall performance of our em-
bedding method on Food-101 test set, we average the Preci-
sion/Recall values over all food images for each method and
plot Precision-Recall Curve (PR Curve) as Fig. 6 shows. We
use mean Average Precision (mAP), which corresponds to
the area under PR Curve, as the quantitative comparison
metric. The mAP value of the ideal algorithm is equal to 1.

We compare our Food-CNN model with several state-of-
the-art feature extraction methods: 1. Pretrained AlexNet
deep neural network : This is the state-of-the-art feature ex-
traction method using pretrained AlexNet [22]. We take
1,000 dim feature representation from the output of the last
fully-connected layer. 2. SIFT+Bag of visual Words(BoW):
As the most popular method among hand-crafted feature
representations, SIFT [25] has been shown to be effective in
several applications. We extract visual features using 1000
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Figure 6: Precision-recall curve for food similarity
embedding(mAP: mean Average Precision, which
represents area under each curve).

Figure 7: Food Embedding Visualization.

words so as to guarantee that it has the same feature dimen-
sion with our Food-CNN.
As can be seen in our results, although SIFT+BOW and

AlexNet greatly outperform random guess baseline, they
lack discriminative power for food images because these mod-
els are mainly designed for the general clustering purpose.
With Food-CNN, we can achieve 4 times performance im-
provements over state-of-the-art models in terms of mAP
value. Algorithm that with much better clustering power
can help the whole system understand visual content and
thus improve the efficiency of online preference learning.
To further verify and visualize the generalization power of

our system, for each of the recipe images that collected from
Yummly, we embed it into 1200 dim feature space by first
using Food-CNN to extract 1000 dim visual representation
and then concatenate it with 200 dim ingredients feature.
We project all image representations to 2-D plane by using
t-Distributed Stochastic Neighbor Embedding(t-SNE) [39]
method. As shown in Fig. 7, we divide the 2-D plane into
several blocks and for each block, we sample a representative
food image resides in that area. The final embedding results
clearly show that our method can effectively group similar
food items (recipes) together and push dissimilar items away
based on their visual appearances and ingredients metadata.
For example, in Fig. 7, we show that burgers, noodles, piz-
zas, and meat are grouped in different areas of the feature
space.

6.2 Online user study
We conducted field study among 227 anonymous users

that recruited from social networks and university mailing
lists. The experiment was approved by Institutional Review
Board (ID: 1411005129) at Cornell University. All partic-
ipants were required to use this system independently for

three times. Each time the study consisted of following two
phases:

Training Phase. Users played with PlateClick for the first
T iterations and the system learnt and elicited preference
vector pT based on the algorithms proposed in this paper
or baseline methods, which will be discussed later. We ran-
domly picked T from set {5, 10, 15} at the beginning but
made sure that each user experienced different values of T
only once.

Testing Phase. After T iterations of training, users en-
tered the testing phase, which consisted of 10 rounds of
pairwise comparisons. We picked testing images based on
preference vector pT that learnt from online interactions:
One of them was selected from food area that user liked
(i.e. item with top 1% preference value) and the other one
from the area that user disliked (i.e. item with bottom 1%
preference value) Both of the images were picked randomly
among unexplored food items.

6.2.1 Prediction accuracy
In order to show the learning performance of our algo-

rithm, we compare it with several combinatorial baselines
that mentioned next. Users encountered these online learn-
ing algorithms randomly when they logged into the system:

LE+EE: This is the online learning algorithm proposed
in this paper that combines the ideas of Label propagation,
Exponentiated Gradient algorithm for user state update and
Exploitation-Exploration strategy for images selection.

LE+RS: This algorithm retains our method for user state
update (LE) but Random Select images to present to user
without any exploitation or exploration.

OP+EE: As each item is represented by 1200 dim feature
vector, we can adopt the idea of regression to tackle this
online learning problem (i.e. learning weight vector w such
that wfsi is higher for item si that user prefer). Hence,
we compare our method with Online Perceptron algorithm
that updates w whenever it makes error, i.e. if yiwfsi ≤ 0,
assign w ← w + yiwfsi , where yi is the label for item
si (pairwise comparison is regarded as binary classification
such that the food item that user select is labeled as +1 and
otherwise -1). In this algorithm, we retain our strategy of
images selection (i.e. EE).

OP+RS: The last algorithm is the Online Perceptron
that mentioned above but with Random images Selection
strategy.

Among 227 participants in our study, 58 of them finally
used algorithm LE+EE, 57 used OP+RS. For the rest of
users (112), half of them (56) tested OP+EE and the other
half (56) tested LE+RS. Overall, the participants for differ-
ent algorithms are totally random so that the performances
of different models are directly comparable.

After all users going through training and testing phases,
we calculate the prediction accuracy of each individual
user and aggregate them based on the context that they
encountered (i.e. the number of training iterations T and
the algorithm settings that mentioned above). The predic-
tion accuracies and their cumulative distributions are shown
in Fig. 8, 9 and 10 respectively.

Length effects of training iterations. As can be seen
in Fig. 8 and Fig. 9, the prediction accuracies of our online
learning algorithm are all significantly higher than the base-
lines.The algorithm performance is further improved with
longer training period. As is clearly shown in Fig. 9, when
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Figure 8: Prediction accuracy for different algo-
rithms in various training settings (asterisks repre-
sent different levels of statistical significance: ∗ ∗ ∗ :
p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05).

the number of training iterations reaches 15, about half of
the users will experience the prediction accuracy that ex-
ceeds 80%, which is fairly promising and decent consider-
ing small number of interactions that system elicited from
scratch. The results above justify that PlateClick, as an
online preference learning system, can adjust itself to ex-
plore users’ preference area as more information is avail-
able from their choices. For the task of item-based food
preference bootstrapping, our system can efficiently balance
the exploration-exploitation while providing reasonably ac-
curate predictions.
Comparison across different algorithms. As men-

tioned previously, we compared our algorithm with some
obvious alternatives. Unfortunately, according to the results
shown in Fig. 8 and Fig. 10, none of these algorithms works
very well and the accuracy of prediction is actually decreas-
ing as the user provides more information. Additionally, as
is shown in Fig. 10, our algorithm has particular advantages
when users are making progress (i.e. the number of training
iterations reaches 15). The reasons why these techniques are
not suited for our application is mainly due to the following
limitations:
Random Selection. Within a limited number of interac-

tions, random selection can not maintain the knowledge that
it has already learned about the user (exploitation), nor ex-
plore unknown areas (exploration). In addition, it’s more
likely that the system will choose food items that are very
similar to each other and thus hard for the user to make
decisions. Therefore, after short periods of interactions, the
system is messed up, and the performance degrades.
Underfitting. The algorithm that will possibly have the

underfitting problem is the online perceptron (OP). For our
application, each food item is represented by 1200 dim fea-
ture vector and OP is trying to learn a separate hyperplane
based on a limited number of training data. As each single
feature is directly derived from deep neural network, the lin-
earity assumptions made by perceptron might yield wrong
predictions for the dishes that haven’t been explored before.

6.2.2 System efficiency
As another two aspects of online preference elicitation

system, computing efficiency and user experience are also
very important metrics for system evaluation. Therefore,
we recorded the program execution time and user response

Figure 9: Cumulative distribution of prediction
accuracy for LE+EE algorithm (Numbers in the
legend represent the values of T through training
phase).

time as a lens into the real-time performance of PlateClick.
As shown in Fig. 11(b), the program execution time is about
0.35s for the first two iterations and less than 0.025s for the
iterations afterwards3. Also, according to Fig. 11(a), the
majority of users can make their decisions in less than 15s
for the task of comparison among ten food images while
the payload for the pairwise comparison is less than 2− 3s.
As a final cumulative metric for the system overhead, it is
shown in Table 2 that even for 15 iterations of training, users
can typically complete the whole process within 53 seconds,
which further justify that PlateClick is a light-weight user-
friendly visual interface for efficient food preference elicita-
tion.

# Iter: 5 # Iter: 10 # Iter: 15
28.75s 39.74s 53.22s

Table 2: Average time to complete training phase.

6.2.3 User Behavior
An interesting phenomenon that we observed from our

field study is that there exists obvious correlation between
total user response time and Precision of our model: Pref-
erence learning of PlateClick tends to be more accurate if
the user made decisions within shorter period of time. As
is shown in Fig. 12, we plot scatter diagram that contains
all data points that users generated when they used Plate-
Click under LE+EE algorithm setting and with 15 number
of training iterations (T = 15). Apparently, most of the
points (blue ones) are above the dotted line in Fig. 12 and
the expected total response time is higher for those users
with lower prediction accuracy. The possible reason behind
this result is that if food pairs are hard to be distinguished
with each other, the responses from user will likely to have
large noise and uncertainty,4 which in turn affects the per-
formance of online learning system.

7. DISCUSSION
In this section we discuss limitations and future directions

for PlateClick.

3Our web system implementation is based on Amazon EC2
t2-micro Linux 64-bit instance
4User engagement is a critical issue in our application. We
will conduct studies/interviews on the effects of human be-
havior in the future.



(a) # training iterations: 5 (b) # training iterations: 10 (c) # training iterations: 15

Figure 10: Comparison of cumulative distribution of prediction accuracy across algorithms.

(a) User Response Time

(b) System Execution Time

Figure 11: Timestamp records for user response and system execution.

Figure 12: Scatter diagram of total user response
time under different precision of model prediction
(Points in the graph represent experimental results
under LE+EE algorithm setting and with 15 number
of training iterations).

Special diets. We noticed in the user study that our
current system can not be efficiently used by people with
special diets (e.g., vegetarian, vegan, kosher and halal) due
to the limits of our image corpus. It’s very unlikely that the
system will select anything such a user would like from the
current main-dishes dataset. It will degrade user experience
to repeatedly show dishes that are not to their taste. In the
future, we need to consider different diets and curate special
food datasets accordingly.

Food courses and diversity. People’s food preferences
are highly dependent on context as determined by factors
such as time of day. It is unnecessarily difficult and possibly
confounding to compare dishes across different courses (e.g.,
between desserts and dinner). In our current system, we
mainly focus on food items from main dishes, which conve-
niently constrains the space of choices available to the user.
Future work will incorporate dishes across different courses
(e.g., breakfast and lunch) and enrich the diversity of our
dataset.

Healthy recommendation. One of the most important
applications that could build on PlateClick is a healthy food
recommendation system. Combining a user’s diet profile
and recipe nutrient metadata, we could recommend appeal-
ing but healthier food alternatives to users so that they are
more likely to follow the system’s advice in their daily lives
and choices. Suggestions guided by people’s preferences will
be more effective and persuasive than a traditional strategy
that lack awareness of what a given person actually likes.
This was our initial motivation for developing PlateClick
and we hope to pursue integration with existing nutritional
behavior change apps.

8. CONCLUSION
In this work, we introduced PlateClick, a novel visual in-

terface for real-time food preference elicitation from scratch.
Compared with previous solutions and online learning sys-
tems, we don’t assume any prior knowledge of the user. In
addition, we greatly simplify the elicitation user interface



by replacing traditional text-based instruments with visual
contents and leveraging a pairwise comparison method. We
demonstrated that these design choices reduce user burden
and cognitive load when using the elicitation system.
Although our algorithmic framework was originally de-

signed for visual content based food preference learning, the
techniques proposed in this paper could be used to enhance
the interplay between human hedonic and content similari-
ties in solving general human-in-the-loop problems. We en-
vision that PlateClick, an efficient and user-friendly food
preference learning system, could be used to capture per-
sonal diet profiles and fuel a wide range of applications in
healthcare and commercial recommender systems.
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