Unbiased Offline Recommender Evaluation for Missing-Not-At-Random Implicit Feedback

Longqi Yang

Yin Cui

Yuan Xuan

Chenyang Wang

Serge Belongie Deborah Estrin

Cornell CIS **Computer Science**

Offline Evaluation of Recommendation Algorithm

Offline Evaluation of Recommendation Algorithm

Offline Evaluation of Recommendation Algorithm

1. Train and validate a recommendation model

2. Averaged performance over heldout (user, item) interaction pairs (Average-Over-All)

Previous work: Average-Over-All is biased for rating-based recommendation systems, because ratings are MNAR [Marlin et al. 09], [Schnabel et al. 16], [Steck 10], [Steck 11], and [Steck 13]

Previous work: Average-Over-All is biased for rating-based recommendation systems, because ratings are MNAR [Marlin et al. 09], [Schnabel et al. 16], [Steck 10], [Steck 11], and [Steck 13]

Previous work: Average-Over-All is unbiased for implicit feedback-based recommendation systems, because implicit feedback is missing uniformly at random.

[Lim 15]

This work: Average-Over-All is biased for implicit feedback-based recommendation systems, because implicit feedback is NOT missing uniformly at random.

This work: Average-Over-All is biased for implicit feedback-based recommendation systems, because implicit feedback is NOT missing uniformly at random.

Popularity bias (Users are more likely to be exposed to popular items)

	Popular Items		Long-tail Items	
# of liked items (over all items)	1	•	10	
# of liked items (over observations)	10	•	1	
Algorithm 1 Performance	0.8		0	
Algorithm 2 Performance	0.75		0.75	

	Popular Items		Long-tail Items	
# of liked items (over all items)	1	•	10	
# of liked items (over observations)	10	•	1	
Algorithm 1 Performance	0.8		0	
Algorithm 2 Performance	0.75		0.75	

	Popular Items		Long-tail Items	
# of liked items (over all items)	1	•	10	
# of liked items (over observations)	10	•	1	
Algorithm 1 Performance	0.8		0	
Algorithm 2 Performance	0.75		0.75	

	Popular Items		Long-tail Items	
# of liked items (over all items)	1	•	10	
# of liked items (over observations)	10	•	1	
Algorithm 1 Performance	0.8		0	
Algorithm 2 Performance	0.75		0.75	

	Popular Items	Long-tail Items	
# of liked items (over all items)	1	•	10
# of liked items (over observations)	10	•	1
Algorithm 1 Performance	0.8		0
Algorithm 2 Performance	0.75		0.75

	Popular Items		Long-tail Items	
# of liked items (over all items)	1	•	10	
# of liked items (over observations)	10	•	1	
Algorithm 1 Performance evaluation			0	
Algorithm 2 Performance	0.75		0.75	

Item rankings predicted by an algorithm

Ideal evaluation:
$$R(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u} c(\hat{Z}_{u,i})$$

Item rankings predicted by an algorithm

Predicted ranking of item i for user u

Ideal evaluation:
$$R(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u} c(\hat{Z}_{u,i})$$
Items liked by user u among the entire item set scoring metric

Reward for (u, i) pair

Item rankings predicted by an algorithm Predicted ranking of item i for user u Ideal evaluation: $R(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u} c(\hat{Z}_{u,i})$ Items liked by user u among the entire item set scoring metric

Reward for user u

Item rankings predicted by an algorithm

Predicted ranking of item i for user u

Ideal evaluation:
$$R(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u} c(\hat{Z}_{u,i})$$
 Items liked by user u among the entire item set scoring metric

Reward for the algorithm

Average-Over-All:
$$\hat{R}_{\mathrm{AOA}}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u^*|} \sum_{i \in \mathcal{S}_u^*} c(\hat{Z}_{u,i})$$
Items liked by user u (observed)

Formalize Bias

$$\mathbb{E}_{O}\left[\hat{R}_{AOA}(\hat{Z})\right] \neq R(\hat{Z})$$

$$O_{u,i} = 1 \text{ if } (u,i) \text{ is observed, and } O_{u,i} = 0 \text{ otherwise}$$

$$O_{u,i} \sim \mathcal{B}(1, P_{u,i})$$

Inverse-Propensity-Scoring (IPS)

$$\hat{R}_{AOA}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u^*|} \sum_{i \in \mathcal{S}_u^*} c(\hat{Z}_{u,i})$$

$$\hat{R}_{IPS}(\hat{Z}|P) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u^*} \frac{c(\hat{Z}_{u,i})}{P_{u,i}}$$

Inverse-Propensity-Scoring (IPS)

$$\hat{R}_{AOA}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u^*|} \sum_{i \in \mathcal{S}_u^*} c(\hat{Z}_{u,i})$$

$$\hat{R}_{IPS}(\hat{Z}|P) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u^*} \frac{c(\hat{Z}_{u,i})}{P_{u,i}}$$

$$\mathbb{E}_O\left[\hat{R}_{\mathrm{IPS}}(\hat{Z}|P)\right] = R(\hat{Z})$$

Self-Normalized Inverse-Propensity-Scoring (SNIPS) [Swaminathan et al.15]

$$\hat{R}_{\text{IPS}}(\hat{Z}|P) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{S}_u^*} \frac{c(\hat{Z}_{u,i})}{P_{u,i}}$$

$$\hat{R}_{\text{SNIPS}}(\hat{Z}|P) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{\sum_{i \in \mathcal{S}_u^*} \frac{1}{P_{u,i}}} \sum_{i \in \mathcal{S}_u^*} \frac{c(\hat{Z}_{u,i})}{P_{u,i}}$$

Estimating Propensity Scores

Factor: Popularity bias (Users are more likely to be exposed to popular items)

Assumptions:

- User-independence assumption $P_{u,i} = P(O_{u,i} = 1) = P(O_{*,i} = 1) = P_{*,i}$
- Two-steps assumption $P_{*,i} = P_{*,i}^{\mathrm{select}} \cdot P_{*,i}^{\mathrm{interact}|\mathrm{select}}$
- User preference is not affected by item presentation

$$P_{*,i}^{\text{interact}|\text{select}} = P_{*,i}^{\text{interact}}$$

Estimating Propensity Scores

Popularity bias model [Steck 11]:

Estimating Propensity Scores

Popularity bias model [Steck 11]:

Measuring bias in recommender evaluation (Yahoo! music rating dataset)

Mean Absolute Error (MAE), Recall

Model	Average- Over-All	R SNIPS $(\gamma = 1.5)$	R SNIPS $(\gamma = 2.0)$	R_{SNIPS} $(\gamma = 2.5)$	R SNIPS $(\gamma = 3.0)$
U-CML	0.401	0.270	0.260	0.253	0.248
A-CML	0.399	0.274	0.26	0.258	0.253
BPR	0.380	0.275	0.250		0.258
PMF	0.386	0.267	_	NIPS produce nificantly low MAE	\ <u>C</u>

Measuring bias in recommender evaluation (Yahoo! music rating dataset)

Mean Absolute Error (MAE), Recall

```
The accuracy of recommending popular

U-Mitems is a significant overestimation of the true recommendation performance

A-CM the true recommendation performa
```

Please come to our poster or refer to our paper for:

- Proofs
- Experimental details.
- More experiments.
- Deeper analysis of the unbiased evaluator.

Conclusions and Future Work

$$\mathbb{E}_O\left[\hat{R}_{\mathrm{IPS}}(\hat{Z}|P)\right] = R(\hat{Z})$$

$$\hat{R}_{\text{SNIPS}}(\hat{Z}|P) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{\sum_{i \in \mathcal{S}_u^*} \frac{1}{P_{u,i}}} \sum_{i \in \mathcal{S}_u^*} \frac{c(\hat{Z}_{u,i})}{P_{u,i}}$$

- Understanding variance of evaluators.
- Propensity estimation (e.g., incorporate auxiliary user and item information).
- Debias training of recommendation systems (e.g., [Liang et al. 16]).

http://www.openrec.ai

Github link, documents, and tutorials

Longqi Yang

Ph.D. candidate

Computer Science, Cornell Tech, Cornell University

Email: ylongqi@cs.cornell.edu

Web: bit.ly/longqi

Twitter: @ylongqi

Connected Experiences Lab

http://cx.jacobs.cornell.edu/

Small Data Lab

http://smalldata.io/

Funders:

