
Unbiased Offline Recommender Evaluation for
Missing-Not-At-Random Implicit Feedback

Longqi Yang
Cornell Tech, Cornell University

ly283@cornell.edu

Yin Cui
Cornell Tech, Cornell University

yc984@cornell.edu

Yuan Xuan
Cornell Tech, Cornell University

yx424@cornell.edu

Chenyang Wang
Cornell Tech, Cornell University

cw823@cornell.edu

Serge Belongie
Cornell Tech, Cornell University

sjb344@cornell.edu

Deborah Estrin
Cornell Tech, Cornell University

destrin@cornell.edu

ABSTRACT
Implicit-feedback Recommenders (ImplicitRec) leverage positive
only user–item interactions, such as clicks, to learn personalized
user preferences. Recommenders are often evaluated and compared
offline using datasets collected from online platforms. These plat-
forms are subject to popularity bias (i.e., popular items are more
likely to be presented and interacted with), and therefore logged
ground truth data are Missing-Not-At-Random (MNAR). As a re-
sult, the widely used Average-Over-All (AOA) evaluator is biased
toward accurately recommending trendy items. In this paper, we
(a) investigate evaluation bias of AOA and (b) develop an unbiased
and practical offline evaluator for implicit MNAR datasets using
the Inverse-Propensity-Scoring (IPS) technique. Through extensive
experiments using four real–world datasets and four widely used
algorithms, we show that (a) popularity bias is widely manifested in
item presentation and interaction; (b) evaluation bias due to MNAR
data pervasively exists in most cases where AOA is used to evaluate
ImplicitRec; and (c) the unbiased estimator significantly reduces
the AOA evaluation bias by more than 30% in the Yahoo! music
dataset in terms of the Mean Absolute Error (MAE).

KEYWORDS
Recommendation; Evaluation; Bias; Implicit feedback; Propensity

ACM Reference Format:
Longqi Yang, Yin Cui, Yuan Xuan, ChenyangWang, Serge Belongie, and Deb-
orah Estrin. 2018. Unbiased Offline Recommender Evaluation for Missing-
Not-At-Random Implicit Feedback. In Twelfth ACM Conference on Recom-
mender Systems (RecSys ’18), October 2–7, 2018, Vancouver, BC, Canada.ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3240323.3240355

1 INTRODUCTION
Researchers often evaluate recommendation algorithms using of-
fline datasets because online A/B testing can be very expensive,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5901-6/18/10. . . $15.00
https://doi.org/10.1145/3240323.3240355

inefficient, and irreproducible. Unlike other machine learning appli-
cations, unbiased evaluation of recommendation performance of-
fline is notoriously challenging because of the biased user feedback
collected from online platforms that selectively recommend items.
Prior work on Explicit-rating Recommenders (ExplicitRec) [12,
30] revealed that users give subjective ratings to items, which re-
sults in Missing-Not-At-Random (MNAR) ground truth data. It
has been widely recognized in the literature [12, 16, 18–20] that
MNAR rating data can lead to biased conclusions. Therefore, many
mechanisms are proposed to debias offline recommender evaluation
of rating data [16, 18–20].

However, existing approaches are not directly applicable to im-
plicit user–item interactions (e.g., click, watch, and listen) [6], which
are much more prevalent and have been widely used by many state-
of-the-art recommendation solutions [3, 5, 29]. Different from ex-
plicit ratings (e.g., those based on a Likert scale), implicit feedback
signals are one-sided and positive only. In other words, an ideal
recommender would never observe user interactions with irrele-
vant1 items, whereas in ExplicitRec, complete observations assume
that each user has a latent preference score for every item. As a
result, for Implicit-feedback Recommenders (ImplicitRec), it is
unclear whether a missing item in a user’s history is not favored
by the user or has simply not yet been observed.

Existing work simplifies the evaluation of ImplicitRec by assum-
ing that positive signals are Missing-At-Random (MAR) [4, 5, 11],
that is, each favored item is equal-likely to be clicked or viewed
by an user. This assumption does not hold in real-world settings
because online recommenders manifest popularity bias [2] (popular
items are much more likely to be recommended and presented to
users). Such a bias leads to the phenomenon that relevant and trendy
items are more likely to be interacted with by users. Eventually,
the Average-Over-All (AOA) evaluator implicitly places greater
weights on the accuracy of serving popular items than on serving
long-tail ones. This may overlook key limitations of recommenda-
tion algorithms, such as under-serving cold start groups [25], being
dominated [2], and exacerbating unhealthful user behavior [24]

In this paper, we develop an unbiased offline recommendation
evaluator for MNAR implicit feedback. Our framework is based on
the Inverse-Propensity-Scoring (IPS) technique used in causal in-
ference [7], which was recently applied to evaluate ExplicitRec [16].
Specifically, we (a) qualitatively and theoretically demonstrate that

1An item is relevant to a user if the user is interested in interacting with it (e.g., clicking
or viewing it). Otherwise, the item is regarded as irrelevant.

https://doi.org/10.1145/3240323.3240355
https://doi.org/10.1145/3240323.3240355

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada L. Yang et al.

the existing evaluation protocol for ImplicitRec is biased; (b) de-
rive unbiased performance estimators for major evaluation metrics,
including AUC, DCG, DCG@K, and Recall@K; and (c) conduct ex-
tensive experiments using four real-world datasets (citeulike [26],
Tradesy [4], Amazon book [13, 28], and Yahoo! music [1]) and
four widely used algorithms (BPR [15], PMF [14], U-CML [5], and
A-CML [5]). Our experimental results highlight three key contribu-
tions and implications of this work:
• The analysis of datasets and trained models (Section 4.2) reveals
that popularity bias is widely manifested in item presentation
(i.e., popular items are more likely to be presented than long-
tail ones) and interaction (i.e., users tend to interact more with
popular items). This implies that more attention is needed in
considering the potentially negative social and economic impacts
of the bias [2, 24].

• The comparisons of the classical AOA evaluator to the unbiased
evaluator proposed herein (Sections 4.3 and 4.4) demonstrate
that AOA is biased in evaluating most ImplicitRec. The bias may
lead to inaccurate judgments of algorithmic improvements and
sub-optimal decisions when it comes to model selection.

• The unbiased evaluator significantly reduces AOA evaluation
error by more than 30% in the Yahoo! music dataset in terms of
the mean absolute error (MAE) (Section 5).
Our code is available at https://github.com/ylongqi/unbiased-

offline-recommender-evaluation.

2 RELATEDWORK
Our work is inspired by three lines of research: (a) debiasing the
evaluation of ExplicitRec; (b) ImplicitRec algorithms and evalua-
tions; and (c) counterfactual evaluation. In this section, we discuss
how our work builds upon existing ideas and contributes new
knowledge to the field.

2.1 Debiasing the evaluation of ExplicitRec
Previous research has shown that for explicit-feedback recom-
menders, users’ ratings are MNAR [12, 16, 18–20]. This is because
people tend to subjectively choose the items they rate, and the
selection reflects biases of personal preferences [16] and opin-
ions [12, 20]. To handle MNAR data and conduct unbiased evalua-
tion, previous work assumed that users have latent ratings for every
item, and then use popularity [19] or other predictive models [16] to
estimate the probability that any given rating is observed. However,
such a paradigm is not applicable to implicit feedback because of
two fundamental differences: Implicit feedback (a) is available only
for the subset of items preferred by users, and (b) is often recorded
passively and thus is unlikely to be intentionally controlled.

Our work addresses the unique missing patterns of implicit feed-
back by extending the IPS framework [16].

2.2 ImplicitRec and evaluation
Recently, there has been a trend toward development of recom-
menders using implicit feedback signals [6], such as click [5, 26],
watch [3], and view [29]. These signals are much richer than ratings.
Classical offline evaluation approaches [4, 5, 11, 26, 29] randomly
hold out one interacted item per user as a testing set and then
report the average performance. Such a paradigm has been shown

to be unbiased under MAR feedback [11]. However, MAR signals
rarely exist in the real world, because it is very unlikely that a con-
tent platform would present items completely at random. In fact,
item presentation is usually mediated by recommendation engines,
which are subject to popularity bias [2].

Our work points out that under MNAR user feedback, the ex-
isting evaluation paradigm is biased. In light of this, we develop a
practical and effective technique to address the bias.

2.3 Counterfactual evaluation
Our unbiased evaluator is based on the techniques developed for
counterfactual evaluation [7, 21, 23], which aim to evaluate ranking
policies offline based on the logs collected from online interactive
systems. It has been successfully applied to interactive search [8]
and recommendation [10, 23]. Our debiasing framework is built on
the Self-Normalized Inverse-Propensity-Scoring (SNIPS) estimator
proposed by Swaminathan et al. [22].

However, classical counterfactual reasoning operates on interac-
tive logs, for example, (user1, article1, reward1), ..., (usern , articlen ,
rewardn), which are different from the implicit feedback-based ma-
trix completion task that we consider. To the best of our knowledge,
there has been little research on applying counterfactual estimators
to debias ImplicitRec evaluations.

3 UNBIASED RECOMMENDER EVALUATION
FOR IMPLICIT FEEDBACK

Recommenders built on implicit feedback receive only users’ one-
sided (positive) preference signals, such as clicks and watches. Un-
der complete observations, user u has a set of preferred items Su
among the entire set of items, I (i.e., Su ⊆ I). An ideal recom-
mendation evaluator calculates the following reward R(Ẑ) for the
predicted item ranking Ẑ .

R(Ẑ) =
1
|U|

∑
u ∈U

1
|Su |

∑
i ∈Su

c(Ẑu,i), (1)

where Ẑu,i is the predicted ranking of item i (among all the items
in I) for user u, and the function c denotes any top-N scoring
metric, such as Area Under Curve (AUC), Discounted Cumulative
Gain (DCG), DCG@K, or Recall@K. These functions are defined as
follows:

AUC: c(Ẑu,i) = 1 −
Ẑu,i
|I |

(2)

DCG: c(Ẑu,i) =
1

log2(Ẑu,i + 1)
(3)

DCG@K: c(Ẑu,i) =
1{Ẑu,i ≤ K}

log2(Ẑu,i + 1)
(4)

Recall@K: c(Ẑu,i) = 1{Ẑu,i ≤ K} (5)
Eqn. 1 measures idealistic recommendation performance, which

assumes that users would go through all items in the system and
interact with every one that appeals to them. From a practical
standpoint, it is impossible to browse and judge millions or billions
of items. As a result, recommenders have access to only a partial
view of Su , denoted by S∗

u . For each positive signal (u, i), i ∈ Su ,
we useOu,i to indicate whether (u, i) is observed (Ou,i = 1 if (u, i) is
observed, andOu,i = 0 otherwise). In addition, inspired by [16], we

https://github.com/ylongqi/unbiased-offline-recommender-evaluation
https://github.com/ylongqi/unbiased-offline-recommender-evaluation

Unbiased Offline Recommender Evaluation for MNAR Implicit Feedback RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

!" !# !$!% !& !' !(

)")$)%)& !# !$!% !')# !" !& !(

!# !$!% !')")$)%)&)# !" !& !(

popular items:

long-tail items:

1 2 3 4 5 6 7 8 9 10 11 12 ranking

*"

*$

)")$)%)&!# !$!% !')# !" !& !(*#

)")#)$)%)&

Figure 1: A hypothetical example to illustrate the evalua-
tion bias that results from use of the AOA evaluator. Three
recommenders generated distinct lists of recommendations,
Z 1, Z 2 and Z 3, for the same user. Among the shaded items
that were preferred by the user, the ones with a solid bor-
der were observed by recommenders. The performance was
measured by DCG, and the results are presented in Table 1.

Table 1: The true and estimated DCG values for three rec-
ommenders in Fig. 1. R(Ẑ) denotes the ground truth, and
R̂AOA(Ẑ) denotes the AOA estimations. The AOA estimator
outputs larger valueswhenpopular items are rankedhigher.

Estimator Z 1 Z 2 Z 3

R(Ẑ) 0.463 0.463 0.494
R̂AOA(Ẑ) 0.585 0.340 0.390

assume the observations of every signal to be Bernoulli distributed,
that is, Ou,i ∼ B(1, Pu,i), where with probability Pu,i = P(Ou,i =

1), (u, i) is observed by a recommender.
In reality, the partial view S∗

u is mostly biased and the implicit
feedback is MNAR. In Section 3.1, we show that the AOA evaluator,
which is widely used in the existing literature, is biased, and in
Section 3.2 we propose an unbiased evaluator based on the inverse-
propensity-scoring (IPS) technique [16].

3.1 Average-over-all (AOA) evaluator
In prior literature, R(Ẑ) was estimated by taking the average over
all observed user feedback S∗

u :

R̂AOA(Ẑ) =
1
|U|

∑
u ∈U

1
|S∗
u |

∑
i ∈S∗

u

c(Ẑu,i)

=
1
|U|

∑
u ∈U

1∑
i ∈Su Ou,i

∑
i ∈Su

c(Ẑu,i) ·Ou,i

(6)

To intuitively illustrate the bias of the AOA evaluator, we consid-
ered a hypothetical platform that served 12 items, as shown in Fig. 1.
We divided the items into two groups based on the number of inter-
actions they received: popular items (a1, ...,a5) and long-tail items
(b1, ...,b7). For a specific user, three different recommenders gen-
erated distinct ranked lists, Z 1,Z 2, and Z 3, based on the predicted
user preferences. Each item on the platform was either relevant

(shaded) or irrelevant (blank) to the user. Among all the relevant
items, only feedback for a partial set was observed (solid border).
To encode the popularity bias manifested in ImplicitRec (i.e., user
interactions with popular items are more likely to be observed),
we assumed that among the relevant items, 75% of the popular
items and 25% of the long-tail items were interacted with. In addi-
tion, three ranked lists were strategically designed: The Z 1 and Z 2

ranked lists had the same true performance on the ranking of rele-
vant items but differed on the serving of the popular and long-tail
groups. The Z 3 ranked list achieved the best true performance.

We calculated the DCG scores (eqn. 3) for three recommenders
using the AOA evaluator (eqn. 6) and compared the scores to the
true performances (eqn. 1). According to the results presented in
Table 1, Z 1 was evaluated as much more accurate than Z 2 and Z 3,
despite the fact that, in reality, Z 2 had the same performance as Z 1,
and Z 3 performed much better. This demonstrates that the AOA
evaluator is significantly biased toward the accuracy of serving
trendy items; that is, the estimated R̂AOA(Ẑ) is larger if popular
items are ranked higher. The conclusions made based on such
empirical evidence result in incorrect and even opposite judgments
of the relative utilities of recommenders.

Basically, the expected outcome of the AOA evaluator does not
conform to the true performance, that is, EO

[
R̂AOA(Ẑ)

]
, R(Ẑ).

We prove this inequivalence by a counterexample. Suppose that
for any user u, among all relevant items (Su), only one item ku ∈

Su has an observation probability close to 1, so that P(Ou,ku) =

1 − ϵ ; whereas for the other items, P(Ou,i) = ϵ, i ∈ Su\{k
u }. In

this case, EO
[
R̂AOA(Ẑ)

]
≈ϵ≪1

1
|U |

∑
u ∈U c(Ẑu,ku) , R(Ẑ). Next,

we present our proposed unbiased performance evaluator as an
alternative to the existing AOA evaluator.

3.2 Unbiased evaluator
To conduct unbiased evaluation of biased observations, we leverage
the IPS framework [16, 22] that weights each observation with the
inverse of its propensity, where the term propensity refers to the
tendency or the likelihood of an event happening. The intuition
is to down-weight the commonly observed interactions, while up-
weighting the rare ones. In the context of this paper, the probability
Pu,i is treated as the pointwise propensity score. Therefore, the IPS
unbiased evaluator is defined as follows:

R̂IPS(Ẑ |P) =
1
|U|

∑
u ∈U

1
|Su |

∑
i ∈S∗

u

c(Ẑu,i)

Pu,i

=
1
|U|

∑
u ∈U

1
|Su |

∑
i ∈Su

c(Ẑu,i)

Pu,i
·Ou,i

(7)

We prove that given any propensity assignment P , R̂IPS(Ẑ |P) is
an unbiased estimator.

EO
[
R̂IPS(Ẑ |P)

]
=

1
|U|

∑
u ∈U

1
|Su |

∑
i ∈Su

c(Ẑu,i)

Pu,i
· EO

[
Ou,i

]
=

1
|U|

∑
u ∈U

1
|Su |

∑
i ∈Su

c(Ẑu,i) = R(Ẑ)

(8)

Furthermore, to estimate |Su | and control the variability of the
IPS evaluator, we leverage the control variates [16, 22] to derive

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada L. Yang et al.

a Self-Normalized Inverse-Propensity-Scoring (SNIPS) evaluator.
According to the theory of Monte Carlo approximation [22], the
estimation Ŵ of the expectation EX [W (X)] has a lower variance
if a multiplicative control variate V (X) with known expectation
EX [V (X)] = v , 0 is introduced, that is, if Ŵ is calculated as:
Ŵ =

∑n
j=1W (X j)∑n
j=1 V (X j)

v . While Ŵ is not a completely unbiased estimator,
it strongly converges to the true expectation for large n [22].

In the context of the IPS evaluator, because EO
[∑

i ∈S∗
u

1
Pu,i

]
=

EO

[∑
i ∈Su

1
Pu,i ·Ou,i

]
= |Su |, we can write the SNIPS evaluation

as follows:

R̂SNIPS(Ẑ |P) =
1
|U|

∑
u ∈U

1
|Su |

EO

[∑
i ∈S∗

u
1

Pu,i

]
∑
i ∈S∗

u
1

Pu,i

∑
i ∈S∗

u

c(Ẑu,i)

Pu,i

=
1
|U|

∑
u ∈U

1∑
i ∈S∗

u
1

Pu,i

∑
i ∈S∗

u

c(Ẑu,i)

Pu,i

(9)

A key challenge in computing R̂SNIPS(Ẑ |P) is to predict the
propensity scores Pu,i . Next, we demonstrate our method, which
estimates the propensity scores based solely on raw observations,
without requiring any auxiliary user or item information.

3.3 Estimating propensity scores
We assume that the propensity score Pu,i is user independent, that
is, Pu,i = P(Ou,i = 1) = P(O∗,i = 1) = P∗,i . This simplified
assumption is made to address the lack of auxiliary user informa-
tion in many user–item interaction records.2 We derive P∗,i by
constructing a two-step generative process of user–item interac-
tions: (1) Select, where a recommender system selects a set of items
to present to a user; and (2) Interact, where the user browses the
recommended items and interacts with the ones she likes. Therefore,
P∗,i can be calculated as follows:

P∗,i = P select∗,i · P
interact |select
∗,i , (10)

where P select
∗,i is the probability that item i is recommended and

P
interact |select
∗,i is the conditional probability that the user interacts

with item i given that it is recommended.
Since implicit feedback is passively recorded and is less likely

to be subjectively manipulated, we assume that P interact |select
∗,i =

P interact
∗,i , that is, the user interacts with all the items she likes in the

recommended set, and the user’s preferences are not affected by
recommendations.3 Also, because P interact

∗,i is user independent, it
is proportional to only the item’s true popularity ni (the number of
occurrences in the complete observation):

P̂ interact∗,i ∝ ni (11)

Because items that are frequently interacted with are more likely
to be recommended in ImplicitRec [2], the probability P select

∗,i is
modeled using n∗i (the number of times item i is interacted with)

2This assumption may be relaxed in cases where auxiliary user information is available.
We discuss this issue in Section 6.
3In reality, user–item interactions may be affected by the order of presentation of the
items, and users’ preferences may be shaped by recommendations in the long term.
Modeling these effects may further improve the evaluator’s performance (as discussed
in Section 6).

as a covariate. Specifically, we follow a common template that
accurately captures the popularity bias [19], which assumes that
P select
∗,i conforms to a power-law distribution parameterized by γ :

P̂ select∗,i ∝ (n∗i)
γ (12)

Therefore, according to the constructed generation process, P̂∗,i
depends on only two variates, n∗i and ni :

P̂∗,i ∝ (n∗i)
γ · ni , (13)

where ni =
∑
u ∈U 1 [i ∈ Su] and n∗i =

∑
u ∈U,i ∈S∗

u
O∗,i .

However, empirically, ni is not directly observable. To address
this problem, we observe that n∗i is sampled from a binomial distri-
bution4 parameterized by ni , that is, n∗i ∼ B(ni , P∗,i). Therefore, a
relationship between ni and n∗i can be built by bridging the genera-
tive model (eqn. 13) with the following unbiased estimator:

P̂∗,i =
n∗i
ni

∝ (n∗i)
γ · ni (14)

Therefore, ni ∝ (n∗i)
1−γ
2 . We use this as a replacement for the

unobservedni in eqn. 13, which results in an unbiased P̂∗,i estimator
that is determined by only the empirical counts of items:

P̂∗,i ∝
(
n∗i

) (γ +1
2

)
(15)

Different values of the power-law exponent γ affect the propen-
sity distributions over items with different observed popularity
levels. A larger γ leads to lower propensity scores for long-tail
items and higher scores for popular ones. In deployed systems, the
exponent can be empirically predicted (as shown in Section 4.3).

4 EXPERIMENTS WITH BIASED FEEDBACK
AND THE UNBIASED EVALUATOR

To more thoroughly understand the nature of MNAR implicit feed-
back and the proposed unbiased evaluator, we studied three large-
scale real-world datasets and four recommendation algorithms. Our
experiments are comprised of three parts: (a) investigating how
popularity bias is manifested in real-world platforms, (b) explor-
ing properties of the power-law exponent, and (c) understanding
debiasing effects of the unbiased evaluator.

4.1 Experimental setup
To describe the stup of the experiments, we review the datasets and
algorithms, describe the recommendation model implementations
with OpenRec [28], and present the details of model training.

4.1.1 Datasets. We used three datasets of varied size and spar-
sity (# interactions

users×# items). For each dataset, we randomly and indepen-
dently hold out 15% of user–item interactions for validation and 15%
for testing, and we used the remaining 70% of records for training.
During testing, we excluded cold-start users and items that have
no record in the training set.
• citeulike [26]. citeulike is a referencemanagement service, where
scholars curate article collections based on their preferences and
professional needs. We used the dataset collected by Wang et

4O∗,i satisfies the Bernoulli distribution.

Unbiased Offline Recommender Evaluation for MNAR Implicit Feedback RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

al. [26] and treated “saving an article” as a positive implicit feed-
back signal. The dataset contains 204,986 interactions between
5,551 users and 16,980 items (sparsity: 2e-3).

• Tradesy [4]. Tradesy is a large second-hand retail market for
clothing and fashion. We used the dataset released by He et al. [4],
and treated “want an item” and “bought an item” as positive
signals. The final dataset includes 19,243 users, 165,906 wanted
or bought items, and 394,421 interactions (sparsity: 1e-4).

• Amazon book [13, 28]. The Amazon book dataset was derived
from the original Amazon review dataset [13] by Yang et al. [28].
The dataset records users’ purchasing history under the Amazon
book category. The dataset covers 99,473 users, 450,166 books,
and 996,938 transactions (sparsity: 2e-5).

4.1.2 Algorithms. We considered recommendation models with
different training procedures (pairwise and pointwise) and archi-
tectures (matrix-factorization based and metric-learning based).
• Bayesian Personalized Ranking (BPR) [15]. BPR is based on
the general framework of matrix factorization that learns vector
representations for users and items. Specifically, user u’s pref-
erence toward item i is modeled as x̂u,i = vTuvi + βi , where v∗
denote representations, and βi denotes the item-specific bias.
Built upon the scoring function x̂u,i , BPR trains the model pa-
rameters on (u, i, j) triplets (i and j represent interacted item and
non-interacted item respectively) using a pairwise ranking based
optimization framework that minimizes the following loss.

min
Θ

∑
(u,i, j)∈D

− ln (x̂u,i − x̂u, j) + λΘ∥Θ∥ (16)

where D is the set of triplets that are randomly sampled from the
training dataset and Θ is the set of model parameters.

• Collaborative Metric Learning with Uniform Weights (U-
CML) [5]. U-CML is trained on the same (u, i, j) triplets as BPR,
but instead of modeling user–item scores using dot products,
U-CML leverages the Euclidean distance metric to regularize
the embedding space, that is, x̂u,i = βi − ∥vu − vi ∥

2, where
all representations are bounded within a unit sphere. Another
difference between U-CML and BPR is that U-CML minimizes
the pairwise hinge loss:

min
Θ

∑
(u,i, j)∈D

[
m + x̂u,i − x̂u, j

]
+
+ λΘ∥Θ∥2 (17)

• CML with Approximate-Rank Weights (A-CML). U-CML
model randomly samples the triplets from the training set, mak-
ing most of them become trivial samples as the training proceeds.
Therefore, as suggested by Hsieh et al. [5], we leveraged the
approximate-rank weighting technique [27] to adjust the weight
of each training instance:

min
Θ

∑
(u,i, j)∈D

wu, j
[
m + x̂u,i − x̂u, j

]
+
+ λΘ∥Θ∥2, (18)

wherewu, j = log(rank(u, j)+1) and rank(u, j) is the rank of item
j in user u’s recommendation list. The rank can be estimated by
sequential [27] or parallel [5] sampling. To speed up the training,
we sampled 10 negative items in parallel for each observed user–
item interaction, as suggested by Hsieh et al. [5].

• ProbabilisticMatrix Factorization (PMF) [14]. PMF is a point-
wise trained recommendation model, that is, it is built upon pairs

(u, i). The model is optimized to minimize the following regular-
ized square error:

min
Θ

∑
u,i

cu,i (ru,i − x̂u,i)
2 + λΘ∥Θ∥2, (19)

where ru,i = 1 if user u interacted with item i , and ru,i = 0
otherwise. Because of the sparsity of the interactions, cu,i is set
to a higher value for ru,i = 1 than for ru,i = 0. In our experiments,
cu,i was set to 1 and 0.25, respectively, for those two cases.

4.1.3 Implementations and training. We implemented the algo-
rithms based on the OpenRec framework [28]. The dimensionality
of user and item representations was set to 50 for citeulike and to
100 for the other datasets. Each model was trained using the Adam
optimizer [9] with a batch size of 8K. Because of differences in the
sizes of the datasets, the models were trained for 50K, 120K, and
200K iterations5 under citeulike, tradesy, and Amazon book, respec-
tively. We conductedmodel selection [16] for each algorithm–metric
pair by training recommenders with different regularization pa-
rameters, that is, λΘ ∈ {0.1, 0.01, 0.001, 1e − 4, 1e − 5}. The optimal
training iteration and λΘ value are determined by the evaluation on
the validation set. The recommendation performances are finally re-
ported on the held-out testing sets. Because of the large item space,
it is computationally infeasible to compute rankings over all items.
Therefore, for each user, we randomly and independently sample
200 items with which users have not interacted before and compute
rankings over the sampled sets. This is a common approach adopted
by recent literature [28].

4.2 Investigating popularity bias
We initially conducted an experiment to understand to what extent
popularity bias is manifested in real-world recommendation systems.
Specifically, we investigated two kinds of bias related to popularity:
(a) interaction bias (i.e., that users tend to interact more often with
popular items), and (b) presentation bias (i.e., that recommenders
unfairly present more popular items than long-tail ones).

However, in existing datasets, interaction bias is barely separable
from presentation bias [17], since a user can interact with an item
only if it is presented. Therefore, we resorted to the joint effects of
the two kinds of bias, which are manifested in the distribution of n∗i ,
that is, the number of times users interact with each item. Intuitively,
an unbiased platform should expect users to interact broadly. As
a result, user attentions are likely to be evenly distributed. On the
contrary, if a platform is highly biased, then user interactions tend
to be more concentrated, which leads to dominance by a small set of
items. We show the n∗i distribution for all i ∈ I in Fig. 2. Given that
the horizontal axis is log scaled, the n∗i distribution is significantly
skewed: Most of the items received very few user interactions. For
example, on Amazon book, more than 99.9% of items received fewer
than 100 interactions. In addition, the degree of bias varies across
datasets: The Amazon book dataset is the most popularity biased,
while the tradesy dataset is the least popularity biased.

For the presentation bias, we measured the average number of
times that an item with the observed popularity n∗ ∈ [1,max(n∗i)]
was recommended, denoted by f (n∗). An unbiased system should

5An iteration is defined as a feed forward and a backward propagation using a batch
(size=8K) of randomly sampled training data.

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada L. Yang et al.

100 101 102 103 104

Sorted items
0

100

200

n
* i

citeulike

100 101 102 103 104 105

Sorted items
0

10

20

30

40

n
* i

Tradesy

100 101 102 103 104 105

Sorted items
0

200

400

n
* i

Amazon book

Figure 2: The distribution of n∗i (the observed number of interactions with item i) in the three datasets. The items are presented
in descending order of n∗i . The horizontal axis is log scaled for better visualization. In all datasets, the n∗i distribution is skewed
and the user interactions are significantly biased.

100 101 102
n *

100

101

102

103

f(n
*)

citeulike
BPR
U-CML

A-CML
PMF

100 101
n *

100
101
102
103
104

f(n
*)

Tradesy
BPR
U-CML

A-CML
PMF

100 101 102

n *

10−1

101

103

105

f(n
*)

Amazon book

BPR
U-CML

A-CML
PMF

Figure 3: Empirically estimated f (n∗) on the three datasets and the four recommendation algorithms. f (n∗) denotes the average
number of times that an itemwith observed popularity n∗ was recommended. Both axes are log scaled. Therefore, exponential
growth is linear in the figure. All settings manifest significant presentation bias.

expect a relatively flat f (n∗) with a small slope, whereas a biased
recommendermay produce linearly or exponentially growing f (n∗).
We treated the top 50 recommendations that the trained recom-
menders made for every user as recommended items, and f (n∗)
was computed as follows:

f (n∗) =

∑
i ∈I 1(n∗i = n

∗) · Ni∑
i ∈I 1(n∗i = n

∗)
, (20)

where Ni is the frequency of item i in all users’ top 50 recommen-
dations. For each user, the recommendation list was computed over
the complete item set I, excluding items that the user had already
interacted with in the training set. In Fig. 3, we show the empiri-
cally estimated f (n∗). All three f (n∗) curves appear to be mostly
monotonic, with small variations, which suggests that an item with
small n∗i is much less likely to be presented, compared to the ones
with larger n∗i . Also, different algorithms tend to manifest diverse
patterns. For example, in Amazon book, BPR and A-CML are more
likely to present long-tail items than PMF and U-CML.

To sum up the findings, we demonstrated that both forms of pop-
ularity bias pervasively exist on platforms that use the mainstream
recommendation algorithms. Although the amount of bias varies
across platforms and algorithms, it appears to be highly significant.
In addition, the estimation of presentation bias provides a mecha-
nism for gaining an empirical understanding of the properties of
the power-law exponent (eqn. 15), which is discussed next.

Table 2: Estimated γ value for every dataset-algorithm pair.
The algorithm that achieves the lowest γ in each dataset is
bolded. The γ estimation is more sensitive to the choice of
datasets than algorithms.

Dataset BPR U-CML A-CML PMF Average
citeulike 1.67 1.64 1.55 1.89 1.69
Tradesy 2.96 2.40 2.25 3.07 2.67

Amazon book 1.85 2.11 1.70 1.80 1.87

4.3 Exploring the power-law exponent
To understand the properties ofγ , we estimated its value by running
simulations on offline datasets. The shape of the probability distri-
bution P̂ select

∗,i , parameterized by γ , was most likely to be affected by
two factors: the recommendation algorithm (which controls what
to select) and the content platform (which determines what is avail-
able). Therefore, we predict a γ for each algorithm–platform pair.
Due to the fact that P̂ select

∗,i is only determined by an item’s observed
popularityn∗i , the probability satisfies: P̂

select
∗,i ∝ (n∗i)

γ ∝ f (n∗ = n∗i).
Estimating the value of γ is equivalent to minimizing the following
square error:

min
γ

∑
(x,y)∈T

(
log

(
f (y)

f (x)

)
− γ · log

(y
x

))2
(21)

where T denotes all possible combinations of (x ,y) where x ,y ∈

[1,max(n∗i)] and x , y. Because this is a quadratic optimization

Unbiased Offline Recommender Evaluation for MNAR Implicit Feedback RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

problem, γ can be analytically solved as:

γ =

∑
(x,y)∈T log

(
f (y)
f (x)

)
· log

(
y
x

)
∑
(x,y)∈T

(
log

(
y
x

))2 (22)

We fit γ using the calculated f (u∗) from Section 4.2. To make
the estimation numerically more stable and robust to outliers, we
exclude the top 0.5% of items that have the highest n∗. The final esti-
mated γ values are presented in Table 2. We find that the power-law
curve accurately fits f (n∗) with small average square error (within
the range (0.001, 0.02)). Also, among all algorithms, A-CML stands
out (bolded in Table 2) as having the lowest estimated γ value in all
datasets, which suggests that it manifests the least presentation bias.
However, overall, the estimated γ value is relatively stable given
a dataset (the value range is 0.34, 0.82, and 0.41 for the citeulike,
Tradesy, and Amazon book datasets, respectively).

These experimental results suggest that in practice, if the past
recommendation algorithm is known, using the power-law func-
tion can accurately fit and reconstruct P̂ select

∗,i . Even if the accurate
recommender is unknown, it is still plausible to roughly predict
the γ value by experimenting classical algorithms in the given
dataset. In the next experiment, we leverage the estimated γ value
to understand debiasing effects of the unbiased evaluator.

4.4 Understanding the unbiased evaluator
We compare the outputs from the AOA and the unbiased evaluator
under the same algorithm–platform settings. Specifically, for each
dataset, we experiment on the minimum, average and maximum γ
values from Table 2. We evaluate models against four metrics: AUC,
DCG, DCG@5 and Recall@5, as defined from eqn. 2 to eqn. 5. The
experimental results are presented in Fig. 4. Our main findings are
discussed below.
• Theunbiased evaluator reports lower performance, regard-
less of the algorithm, dataset or evaluationmetric. As shown
in Fig. 4, after applying the unbiased evaluation, the estimated rec-
ommendation performance significantly drops. This is because
recommenders usually perform worse on long tail items than
popular ones, and the unbiased evaluator corrects and reduces the
biased weights that AOA places on popular items. This finding
reveals that the traditional evaluation method may over-estimate
the performance of recommendation algorithms.

• The unbiased evaluator may amplify, diminish, or flip the
relative differences reported by AOA. In many cases, the un-
biased estimator does not change the absolute performance dif-
ference between algorithms but amplifies the relative difference,
e.g., BPR outperforms PMF by 22% and 26% in terms of the Recall
reported by AOA and γ (min), respectively. Also, the unbiased
evaluator may diminish (e.g., U-CML vs. BPR under Amazon
book-DCG) or flip (e.g., PMF vs. U-CML under Tradesy-DCG) the
relative differences. These observations highlight a caveat that
traditional evaluation may lead to inaccurate or mis-judgments of
algorithms’ relative utilities.

• The outputs of the unbiased estimator are stable for dif-
ferent γ values from the estimated range. In all conditions,
the outputs of the unbiased evaluator are stable for differnt γ
values (min, avg., or max). In other words, as long as the γ value

is from the estimated range, the unbiased evaluator is expected
to produce robust evaluation results.
In summary, these results demonstrate that the unbiased evalua-

tor is robust and has the potential to more objectively evaluate and
compare different recommenders. Next, we empirically measure its
debiasing performance.

5 EVALUATING DEBIASING PERFORMANCE
We leverage the Yahoo! music ratings dataset [1] to quantify debi-
asing performance of the unbiased evaluator. The dataset contains
users’ ratings towards a uniform-randomly selected sets of music,
which can be used to measure recommenders’ true performances.

5.1 Experimental setup
The original dataset includes a training set and a testing set. The
training set contains 300K ratings given by 15.4K users against 1K
songs through natural interactions, and the testing set is collected
by asking a subset of 5.4K users to rate 10 randomly selected songs.
To tailor this dataset for experimenting implicit feedback, we treat
items rated greater than or equal to 4 as relevant, and others as
irrelevant, as suggested by prior literature [5]. We filter the testing
set by retaining users who have at least a relevant and an irrele-
vant song in the testing set and two relevant songs in the training
set (2,296 users satisfy these requirements). We additionally held
out a biased testing set (biased-testing) from the training set by
randomly sampling 300 songs for each user.

We train models discussed in Section 4.1 using the same protocol
but with fixed hyperparameters (λΘ = 0.001, training iterations:
10K, latent factors: 50). For each model, different evaluators are
used to evaluate its performance against the biased-testing set in
terms of AUC and Recall.6 The models’ true performances were
calculated by AOA over the unbiased testing set.

5.2 Results
Table 3 shows the mean absolute error (MAE) between different
evaluators’ outputs on the biased-testing set and the recommenders’
true performances. For both AUC and Recall, the unbiased evalu-
ator (UB) reduced more than 30% of the errors in AOA, and UB’s
debiasing performance was insensitive to the hyperparameter se-
lections. Within the range of [1.5, 3.0], UB consistently produced
significantly lower errors than AOA. However, these results also
demonstrate that UB is still imperfect, and that there is ample room
for future improvements.

6 CONCLUSION AND DISCUSSION
We studied the problem of evaluating ImplicitRec using offline
datasets and showed that the widely adopted AOA evaluation is
biased toward popularity. Built upon the IPS technique from causal
inference, we developed a theoretically grounded unbiased evalua-
tor and empirically demonstrated its ability to significantly reduce
recommender evaluation biases. However, the developed unbiased
evaluator is limited in its two simplified assumptions, which points
out promising future research directions:

6Recall@30 (biased-testing set) and Recall@1 (testing set) were compared since the
biased-testing set is 10 times as large as the testing set.

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada L. Yang et al.

0.90

0.91

0.92

0.93

0.94

AU
C

citeulike
BPR
U-CML

A-CML
PMF

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Re
ca

ll@
5

citeulike
BPR
U-CML

A-CML
PMF

0.40

0.42

0.44

0.46

0.48

DC
G

citeulike
BPR
U-CML

A-CML
PMF

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

DC
G@

5

citeulike
BPR
U-CML

A-CML
PMF

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

AU
C

Tradesy
BPR
U-CML

A-CML
PMF

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425
Re

ca
ll@

5
Tradesy

BPR
U-CML

A-CML
PMF

0.30

0.32

0.34

0.36

0.38

0.40

0.42

DC
G

Tradesy
BPR
U-CML

A-CML
PMF

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

DC
G@

5

Tradesy
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

AU
C

Amazon book
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Re
ca

ll@
5

Amazon book
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11
0.36

0.38

0.40

0.42

0.44

0.46

DC
G

Amazon book
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11
0.22

0.24

0.26

0.28

0.30

0.32

0.34

DC
G@

5

Amazon book
BPR
U-CML

A-CML
PMF

Figure 4: Comparison of the traditional and unbiased evaluators in measuring the performance of four recommendation algo-
rithms. The evaluations were conducted over three datasets using four metrics. Each sub-figure represents a specific dataset–
metric pair. For the unbiased evaluator, three estimated γ values from Section 4.3 were used in the experiments. The unbiased
evaluator significantly reduces the biased weights that the AOAmethod places on the popular items and produces robust and
consistent results for any γ from the estimated range.

Table 3: Mean absolute error (MAE) between evaluators’ out-
puts on the biased-testing set and recommenders’ true per-
formances. Performancewasmeasured against AUC andRe-
call. For the unbiased evaluator (UB), fourγ valueswere used
in the experiments (γ = 1.5, 2.0, 2.5, 3.0).

(a) Mean absolute error (MAE) on AUC

Model AOA UB(1.5) UB(2.0) UB(2.5) UB(3.0)
U-CML 0.151 0.102 0.099 0.096 0.094
A-CML 0.152 0.103 0.099 0.097 0.094
BPR 0.147 0.109 0.106 0.104 0.103
PMF 0.148 0.103 0.100 0.097 0.095

(b) Mean absolute error (MAE) on Recall

Model AOA UB(1.5) UB(2.0) UB(2.5) UB(3.0)
U-CML 0.401 0.270 0.260 0.253 0.248
A-CML 0.399 0.274 0.264 0.258 0.253
BPR 0.380 0.275 0.268 0.262 0.258
PMF 0.386 0.267 0.259 0.252 0.248

• User-independent propensity. In the absence of detailed meta-
information about users, we assumed that the propensity was
user independent and that the probability of an item being pre-
sented was determined by its observed popularity. In reality, the

propensity may be affected by user-specific traits and preferences.
Future research could investigate more sophisticated propensity
estimation methods, such as building predictive models to take
auxiliary user features into consideration.

• Selection-independent interaction.Weassumed that the prob-
ability that a user interacts with an item is independent of the
probability that the item is recommended. This does not capture
the potential impact of recommendations and item presentation
order on users’ preferences. Future research could conduct con-
trolled user testing to model these nuanced effects.
In addition, our work has implications for the development of

recommendation algorithms that are robust to popularity bias. This
work shows that a recommender’s accuracy on popular items usu-
ally overestimates that recommender’s true performance. Algo-
rithms that intend to be robust to popularity bias should explore
ways to improve long-tail recommendations, not only through
popularity under-weighting, but also via other techniques such as
stratified sampling, data augmentation, and low-shot learning.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
and suggestions. This research was funded by the National Science
Foundation (#1700832) and Oath (the Connected Experiences Lab-
oratory at Cornell Tech). The work was further supported by the
small data lab at Cornell Tech, which receives funding from NSF,
NIH, RWJF, UnitedHealth Group, Google, and Adobe.

Unbiased Offline Recommender Evaluation for MNAR Implicit Feedback RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

REFERENCES
[1] 2006. Yahoo! Webscope dataset ydata-ymusic-rating-study-v1. http://research.

yahoo.com/Academic_Relations
[2] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling

Popularity Bias in Learning-to-Rank Recommendation. In Proceedings of the
Eleventh ACM Conference on Recommender Systems. ACM, 42–46.

[3] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. 2010.
The YouTube video recommendation system. In Proceedings of the fourth ACM
conference on Recommender systems. ACM, 293–296.

[4] Ruining He and Julian McAuley. 2016. VBPR: Visual Bayesian Personalized
Ranking from Implicit Feedback.. In AAAI. 144–150.

[5] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 193–201.

[6] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[7] T. Joachims and A. Swaminathan. 2016. Tutorial on Counterfactual Evaluation
and Learning for Search, Recommendation and Ad Placement. In ACM Conference
on Research and Development in Information Retrieval (SIGIR). 1199–1201.

[8] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. ACM, 781–789.

[9] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[10] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline
evaluation of contextual-bandit-based news article recommendation algorithms.
In Proceedings of the fourth ACM international conference on Web search and data
mining. ACM, 297–306.

[11] Daryl Lim, Julian McAuley, and Gert Lanckriet. 2015. Top-n recommendation
with missing implicit feedback. In Proceedings of the 9th ACM Conference on
Recommender Systems. ACM, 309–312.

[12] Benjamin M Marlin and Richard S Zemel. 2009. Collaborative prediction and
ranking with non-randommissing data. In Proceedings of the third ACM conference
on Recommender systems. ACM, 5–12.

[13] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks
of substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
785–794.

[14] Andriy Mnih and Ruslan R Salakhutdinov. 2008. Probabilistic matrix factorization.
In Advances in neural information processing systems. 1257–1264.

[15] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[16] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as Treatments: Debiasing Learning
and Evaluation. In International Conference on Machine Learning. 1670–1679.

[17] Patrick Shafto and Olfa Nasraoui. 2016. Human-recommender systems: From
benchmark data to benchmark cognitive models. In Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, 127–130.

[18] Harald Steck. 2010. Training and testing of recommender systems on data missing
not at random. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 713–722.

[19] Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings
of the fifth ACM conference on Recommender systems. ACM, 125–132.

[20] Harald Steck. 2013. Evaluation of recommendations: rating-prediction and rank-
ing. In Proceedings of the 7th ACM conference on Recommender systems. ACM,
213–220.

[21] Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual risk mini-
mization: Learning from logged bandit feedback. In International Conference on
Machine Learning. 814–823.

[22] Adith Swaminathan and Thorsten Joachims. 2015. The self-normalized estimator
for counterfactual learning. In Advances in Neural Information Processing Systems.
3231–3239.

[23] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John
Langford, Damien Jose, and Imed Zitouni. 2017. Off-policy evaluation for slate
recommendation. In Advances in Neural Information Processing Systems. 3635–
3645.

[24] Christoph Trattner and David Elsweiler. 2017. Investigating the healthiness
of internet-sourced recipes: implications for meal planning and recommender
systems. In Proceedings of the 26th international conference on world wide web.
International World Wide Web Conferences Steering Committee, 489–498.

[25] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in neural information process-
ing systems. 2643–2651.

[26] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1235–1244.

[27] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to
large vocabulary image annotation. In IJCAI, Vol. 11. 2764–2770.

[28] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and
Deborah Estrin. 2018. OpenRec: A Modular Framework for Extensible and
Adaptable Recommendation Algorithms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (WSDM ’18). ACM, New
York, NY, USA, 664–672. https://doi.org/10.1145/3159652.3159681

[29] Longqi Yang, Chen Fang, Hailin Jin, Matthew D Hoffman, and Deborah Estrin.
2017. Personalizing Software and Web Services by Integrating Unstructured
Application Usage Traces. In Proceedings of the 26th International Conference
on World Wide Web Companion. International World Wide Web Conferences
Steering Committee, 485–493.

[30] Xiaoying Zhang, Junzhou Zhao, and John Lui. 2017. Modeling the Assimilation-
Contrast Effects in Online Product Rating Systems: Debiasing and Recommenda-
tions. In Proceedings of the Eleventh ACM Conference on Recommender Systems.
ACM, 98–106.

http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations
https://doi.org/10.1145/3159652.3159681

	Abstract
	1 Introduction
	2 Related Work
	2.1 Debiasing the evaluation of ExplicitRec
	2.2 ImplicitRec and evaluation
	2.3 Counterfactual evaluation

	3 Unbiased Recommender Evaluation for Implicit Feedback
	3.1 Average-over-all (AOA) evaluator
	3.2 Unbiased evaluator
	3.3 Estimating propensity scores

	4 Experiments with Biased Feedback and the Unbiased Evaluator
	4.1 Experimental setup
	4.2 Investigating popularity bias
	4.3 Exploring the power-law exponent
	4.4 Understanding the unbiased evaluator

	5 Evaluating debiasing performance
	5.1 Experimental setup
	5.2 Results

	6 Conclusion and Discussion
	Acknowledgments
	References

