
USER-CENTRIC RECOMMENDATION SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Longqi Yang

August 2019

© 2019 Longqi Yang

ALL RIGHTS RESERVED

USER-CENTRIC RECOMMENDATION SYSTEMS

Longqi Yang, Ph.D.

Cornell University 2019

People’s daily actions and decisions are increasingly shaped by recommenda-

tion systems (recommenders) that selectively suggest and present information

items, from e-commerce and content platforms to education and wellness ap-

plications. However, existing systems are often optimized to promote commer-

cial metrics, such as click-through rates and sales, while overlooking utility for

individual users. As a result, recommendations can be narrow, skewed, homo-

geneous, and divergent from users’ aspirations.

This thesis introduces user-centric recommendation systems that are built

to optimize for individuals’ benefit. These systems advance the state of the art

of recommenders by addressing the bias and incompleteness of implicit feed-

back upon which existing systems rely, such as click, download, and share.

Specifically, this thesis explores three research directions: (1) Debiasing implicit

feedback. We leverage a Self-Normalized Inverse-Propensity-Scoring (SNIPS)

technique to derive a debiased measure of recommendation performance. Our

approach models and alleviates popularity bias and is shown to significantly

reduce the Mean Absolute Error (MAE) of evaluating recommendation systems

offline. (2) Leveraging richer data sources to learn broader user preferences.

We develop an unsupervised learning algorithm to learn discriminative user

representations from unstructured software usage traces. The learned represen-

tations significantly improve the performance of personalization systems for

creative professionals, including creative content recommenders and user tag-

ging systems. (3) Interactive preference learning addressing the limitations

of passively collected offline data. We build an interactive learning frame-

work to learn users’ food preferences from adaptive pairwise comparisons. This

framework enables a recipe recommender that satisfies users’ tastes and nu-

tritional expectations. We also design an onboarding survey to empower an

intention-informed podcast recommender. Through lab and field experiments,

we demonstrate that these systems can promote healthier diets and aspiration-

aligned content choices.

In addition to the aforementioned user-centric recommenders, this thesis

also contributes an open source tool, named OpenRec, to tackle the challenges

of model generalization and adaptation that arise in building heterogeneous

recommendation systems. OpenRec provides modular interfaces so that mono-

lithic algorithms can be readily decomposed or combined for diverse applica-

tion scenarios. At the end of this thesis, we discuss future research to personal-

ize pervasive intelligent systems for people and our society and to understand

and mitigate the unintended consequences of personalization.

BIOGRAPHICAL SKETCH

Longqi Yang grew up in Suichang, China and received his B.Eng. in Information

and Communication Engineering from Zhejiang University in 2014. Since then,

he has pursued a Ph.D. in Computer Science at Cornell University under the

supervision of Prof. Deborah Estrin. He conducted his thesis research as a part

of the Connected Experiences (Cx) Lab and the Small Data Lab, both at Cornell

Tech. His research has focused on personalization, recommendation systems,

and machine learning for user behavior modeling. In this line of work, Longqi

has made various types of contributions, including developing novel recom-

mendation methods and algorithms using advanced machine learning and deep

learning techniques, building deployable systems, and conducting lab and field

experiments. His work has been deployed and adopted commercially and rec-

ognized at flagship industrial and academic conferences.

iii

Dedicated to my family.

iv

ACKNOWLEDGEMENTS

First and foremost, I have been incredibly lucky to have Deborah Estrin as my

Ph.D. advisor. She has been, and will continue to be, my role model as a re-

searcher, advisor, and colleague. What I have learned from her is far beyond

how to communicate, conduct research, mentor students, and collaborate with

others. Words are not enough to express my gratitude for her support, guid-

ance, and trust over the past five years. I will demonstrate the spirit that I have

inherited from her through my work in the years to come.

I have also been extremely fortunate to have Serge Belongie, Mor Naaman,

Nicola Dell, and Claire Cardie as my thesis committee members. Working with

them and being exposed to ideas and perspectives from their areas of expertise

has played a central role in the development of my research interests and values.

They have always been great supporters throughout my Ph.D. study.

In addition, this thesis would not have been possible without my excel-

lent co-authors, including my advisors, collaborators, lab mates, and mentees:

Deborah Estrin, Serge Belongie, Mor Naaman, Nicola Dell, Curtis Cole, Cheng-

Kang Hsieh, Hongjian Yang, JP Pollak, Min Aung, Faisal Alquaddoomi, Mash-

fiqui Rabbi, Tanzeem Choudhury, Chen Fang, Hailin Jin, Matthew D. Hoffman,

Hongyi Wen, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne, Christina

Tsangouri, Yin Cui, Yuan Xuan, Chenyang Wang, Eugene Bagdasaryan, Joshua

Gruenstein, Tsung-Yi Lin, Honghao Wei, Diana Freed, Alex Wu, Judy Wu, and

Fan Zhang. I would also like to thank many administrative staff members who

made almost everything that I did as smooth as possible: Becky Stewart, Donna

Rose, Jessie Taft, Juliana Kleist-Mendez, Devaneke Crumpler, Sarah Abdelnour,

and Tamika Morales.

My Ph.D. experience has been made unique by Cornell Tech, where I am

v

grateful to be one of the first cohorts of Ph.D. students, including Andreas Veit,

Kimberly Wilber, Yin Cui, Fan Zhang, Xiao Ma, Lei Shi, Yuhang Zhao, Yuhang

Ma, and Fabian Okeke. Growing with the campus and being surrounded by

people who are passionate about real-world impact is a truly once-in-a-lifetime

opportunity. I especially value the chances that I have gotten to interact with

people from other disciplines beyond computer science, which has always been

a great source of inspiration.

Last but not least, my debts to my parents, Quanjun Yang and Mingfei Wang,

are unbounded. They have provided unconditional support and love through-

out my life and have always encouraged me to be brave to challenge myself

and to make a positive impact on the world. I also want to sincerely thank my

fiancée, Xiaoti Hu, who has always been by my side since we were together at

college. Without her selfless support, trust and sacrifice, getting through the

rough time of pursuing my Ph.D. would not have been possible.

The research included in this thesis was supported by the National Science

Foundation under grant IIS-1700832 and by Yahoo Research (via the Connected

Experiences Laboratory at Cornell Tech). The work was further supported by

the small data lab at Cornell Tech, which received funding from NSF, NIH,

RWJF, UnitedHealth Group, Google, and Adobe.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xii

1 Introduction 1
1.1 Debiasing implicit feedback . 3
1.2 Leveraging richer data sources . 3
1.3 Interactive preference learning . 4
1.4 Generalization of recommendation algorithms 6
1.5 Thesis organization . 7

2 Debiasing implicit feedback: unbiased recommender evaluation 8
2.1 Introduction . 8
2.2 Related work . 10

2.2.1 Debiasing the evaluation of ExplicitRec 11
2.2.2 ImplicitRec and evaluation 11
2.2.3 Counterfactual evaluation 12

2.3 Unbiased recommender evaluation for implicit feedback 12
2.3.1 Average-over-all (AOA) evaluator 14
2.3.2 Unbiased evaluator . 16
2.3.3 Estimating propensity scores 17

2.4 Experiments with biased feedback and the evaluator 19
2.4.1 Experimental setup . 20
2.4.2 Investigating popularity bias 24
2.4.3 Exploring the power-law exponent 26
2.4.4 Understanding the unbiased evaluator 28

2.5 Evaluating debiasing performance 30
2.5.1 Experimental setup . 30
2.5.2 Results . 31

2.6 Conclusions and discussions . 32

3 Leveraging richer data sources: personalized creative applications in-
corporating unstructured software usage traces 33
3.1 Introduction . 33
3.2 Related work . 36

3.2.1 Distributed representation learning 36
3.2.2 User modeling in online social platforms 37
3.2.3 Software user and command modeling 37

3.3 Dataset . 39

vii

3.4 Software user representation . 40
3.4.1 util2vec framework . 40
3.4.2 Implementation details . 42
3.4.3 User profiling performance 43

3.5 Applications . 45
3.5.1 Software user tagging . 47
3.5.2 Cold-start art project recommendation 52
3.5.3 Inspiration engine . 58

3.6 Conclusions . 61

4 Interactive preference learning: a personalized nutrient-based recipe
recommendation system 62
4.1 Introduction . 62
4.2 Related work . 66

4.2.1 Healthy meal recommender system 66
4.2.2 Cold-start problem and preference elicitation 67
4.2.3 Pairwise algorithms for recommendation 68
4.2.4 Food image analysis . 69

4.3 Yum-me system design . 70
4.3.1 Large scale food database 71
4.3.2 User survey . 74
4.3.3 Adaptive visual interface 75

4.4 Online learning framework . 76
4.4.1 User state update . 77
4.4.2 Images selection . 81

4.5 FoodDist: food image embedding 83
4.5.1 Learning with classification 84
4.5.2 Metric learning . 85
4.5.3 Multitask learning . 87

4.6 Evaluation . 88
4.6.1 User testing for the online learning framework 89
4.6.2 Offline benchmarking for FoodDist 94
4.6.3 End-to-end user testing . 97

4.7 Discussions . 106
4.7.1 Limitations of the evaluations 106
4.7.2 Limitations of Yum-me in recommending healthy meals . 107
4.7.3 Yum-me for real world dietary applications 107
4.7.4 FoodDist for food image analysis tasks 108

4.8 Conclusions . 109

5 Interactive preference learning: an intention-informed spoken word
content recommendation system 110
5.1 Introduction . 110
5.2 Related work . 113

viii

5.2.1 Effects of recommendations 113
5.2.2 User intentions . 115
5.2.3 Recommendations beyond accuracy 116
5.2.4 Web spoken word content 116

5.3 Study design . 117
5.3.1 Onboarding (ONB) . 118
5.3.2 Field study (FIE) . 120
5.3.3 Post-study survey . 123
5.3.4 Participant recruitment . 124

5.4 Study results . 125
5.4.1 General usage patterns . 126

5.5 Qualitative usage results . 128
5.5.1 Choices related to topic-wise intentions 129
5.5.2 Exploratory choices . 131
5.5.3 User satisfaction . 133

5.6 Implications and discussions . 134
5.6.1 Employing planning and intentions 134
5.6.2 Encouraging exploration . 135
5.6.3 Understanding user satisfaction 136
5.6.4 Optimizing for multiple objectives 137
5.6.5 Limitations of intention-agnostic metrics 137

5.7 Conclusions . 138

6 Generalization of recommendation algorithms 139
6.1 Introduction . 139
6.2 Evolution of recommender systems 143

6.2.1 Pure collaborative filtering models 143
6.2.2 Hybrid and content-ware models 144

6.3 Related frameworks . 145
6.4 OpenRec framework . 147

6.4.1 Recommenders . 148
6.4.2 Modules . 150
6.4.3 Utility functions . 152
6.4.4 Generalization . 153

6.5 Experiments and use cases . 153
6.5.1 Validity: reproducing monolithic implementations 154
6.5.2 Efficiency: quick prototyping and experimentation 160
6.5.3 Extensibility: developing new algorithms via extension . . 165

6.6 Conclusions . 167

7 Future work 168

Bibliography 171

ix

LIST OF TABLES

2.1 The true and estimated DCG values for three recommenders in
Fig. 2.1. R(Ẑ) denotes the ground truth. R̂AOA(Ẑ) denotes the
AOA estimations. The AOA estimator outputs larger values
when popular items are ranked higher. 15

2.2 Estimated γ value for every dataset–algorithm pair. The algo-
rithm that achieves the lowest γ in each dataset is shown in bold-
face. The γ estimation is more sensitive to the choice of datasets
than to the choice of algorithms. 27

2.3 The Mean absolute error (MAE) between evaluators’ outputs
on the biased-testing set and recommenders’ true performances.
Performance was measured against AUC and Recall. For the
unbiased evaluator (UB), four γ values were used in the experi-
ments (γ = 1.5, 2.0, 2.5, 3.0). 31

3.1 User fingerprinting performance (hold-out session retrieval) in
terms of mean reciprocal rank (MRR). The improvement is rela-
tive to the bag-of-actions+tf-idf. 45

3.2 5-nearest neighbors of selected actions according to the action
embedding X. The actions in the first row are the index, and
the five actions below are the corresponding nearest neighbors.
(From left to right, the actions are related to video editing, font
awesome icons, blur filters, path manipulations and shadow effects,
respectively.) . 46

3.3 User tagging performance in terms of Recall@K. We use boldface
for the best performed approach and feature set. The percentage
of improvements are the comparison between util2vec (boldface)
and popular tags. Our tagging system outperforms the popular-
ity tags baseline by 31.0% and 35.0% in terms of Recall@1 and
Recall@2 respectively. 50

3.4 Art project recommendation performance for cold-start users in
terms of Recall@K and AUC. We use boldface for the best per-
formed approach and feature set. The percentage of improve-
ments are the comparison between the approach in boldface and
the baseline method (popular items). 57

3.5 Action-image retrieval performance in terms of Recall@K. We
use boldface for the best performed approach. 59

4.1 The size of databases for different diet types. Unit: number of
unique recipes. 72

4.2 Average duration to complete the training phase. 93
4.3 The classification task performance. ∗ represents the state-of-the-

art approaches, and the boldface text indicates the method with
the best performance. 96

x

4.4 The retrieval task performance. ∗ represents the state-of-the-art
approaches, and the boldface text indicates the method with the
best performance. (Note: The mAP value that we report for
Food-CNN is higher because we use pixel-wise mean subtrac-
tion, whereas the original paper only used per-channel mean
subtraction.) . 97

4.5 The statistics of nutritional expectations indicated by 60 partici-
pants. Unit: number of participants. 100

4.6 The Average Acceptance Rates (Avg. Acc.), Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) of two recommen-
dation systems. Paired t-test p-value (Avg. Acc.): < 10−9. 102

5.1 Participants’ demographic information including gender, age,
primary mobile device, and college major. 124

6.1 Comparing OpenRec to existing software frameworks for rec-
ommender systems (Sys-m: system-level modularity, Algo-m:
algorithm-level modularity). 146

6.2 Testing performance on citeulike dataset [162] in terms of AUC
and Recall@K (CDL-OpenRec and CDL-Original). 159

xi

LIST OF FIGURES

2.1 A hypothetical example to illustrate the evaluation bias that re-
sults from use of the AOA evaluator. Three recommenders gen-
erated distinct lists of recommendations, Z1, Z2 and Z3, for the
same user. Among the shaded items that were preferred by
the user, the ones with a solid border were observed by recom-
menders. The performance was measured by DCG, and the re-
sults are presented in Table 2.1. 14

2.2 The distribution of n∗i (the observed number of interactions with
item i) in the three datasets. The items are presented in descend-
ing order of n∗i . The horizontal axis is log scaled for better visual-
ization. In all datasets, the n∗i distribution is skewed and the user
interactions are significantly biased. 24

2.3 Empirically estimated f (n∗) on the three datasets and the four
recommendation algorithms. f (n∗) denotes the average num-
ber of times that an item with observed popularity n∗ was rec-
ommended. Both axes are log scaled. Therefore, exponential
growth is linear in the figure. All settings manifest significant
presentation bias. 25

2.4 Comparison of the traditional and unbiased evaluators in mea-
suring the performance of four recommendation algorithms.
The evaluations were conducted over three datasets using four
metrics. Each sub-figure represents a specific dataset–metric
pair. For the unbiased evaluator, three estimated γ values from
Section 2.4.3 were used in the experiments. The unbiased eval-
uator significantly reduces the biased weights that the AOA
method places on the popular items and produces robust and
consistent results for any γ from the estimated range. 28

3.1 Services that can benefit from the integration of application us-
age traces. By leveraging the user representations learned from
sequences of actions, software service providers and social plat-
forms can improve their personalized services and empower
new user experiences. 34

3.2 Data samples of Photoshop usage records (left) and social inter-
actions on Behance (right). We collected three categories of social
interactions for each user: projects viewed, self-disclosed areas of fo-
cus and uploaded projects. 40

3.3 The architecture of util2vec model. The columns of V and X store
the user representations and action representations respectively.
While the action embedding X is shared across different users,
user embedding V is user-specific. 41

xii

3.4 Six user tagging examples with two different approaches. For
each user, we show her portfolio, top 5 tag predictions with
util2vec feature, top 5 most popular tags and self-disclosed tags.
The tags with orange color are the correct predictions, and the
ones with green color are the ones that are inferrable from the
portfolio but not explicitly selected by the user. 51

3.5 Two-phase recommendation framework. In step 1, we derive
users’ latent factors and items’ latent factors and bias from their
implicit feedback (project views). In step 2, we learn a projection
function f to map software usage features to the corresponding
users’ latent factors. 54

3.6 The algorithm framework for the inspiration engine. We learn
a function g to project image features to the util2vec embedding
space such that true actions-image pairs are close to each other
and false pairs are father away. 58

3.7 Four image retrieval results of the inspiration engine using sin-
gle action. The retrieval results reflect the context where each
action is often used. For example, with fade smart blur, returned
images have blurred background and fading effects, and with
rotate canvas, images tend to have repetitive patterns. 60

4.1 An overview of Yum-me. This figure shows three sample scenar-
ios in which Yum-me can be used: desktop browser, mobile, and
smart watch. The fine-grained dietary profile is used to re-rank
and personalize recipe recommendations. 70

4.2 An overview of two sample databases: (a) for users without di-
etary restrictions and (b) for vegetarian users. 73

4.3 User-system interaction at iteration t. 76
4.4 The locally connected graph with item i. 79
4.5 An Euclidean distance embedding of FoodDist. This figure

shows the pairwise euclidean distances between food image rep-
resentations. A distance of 0.0 means that two food items are
identical and a distance of 2.0 represents that the image contents
are completely different. In this example, if the threshold is set
to 1.0, then all the images can be correctly classified. 83

4.6 The multitask learning structure of FoodDist. Different types
of layers are denoted by different colors. The format of each
type of layer: Convolution layer: [receptive field size:step size...,
#channels]; Pooling layer: [pooling size:step size...]; Fully con-
nected layer: [..., output dimension]. 86

4.7 The prediction accuracy of different algorithms in various train-
ing settings (asterisks represent different levels of statistical sig-
nificance: ∗∗∗ : p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05). 91

xiii

4.8 The cumulative distribution of the prediction accuracy of LE+EE
algorithm (Numbers in the legend represent the values of T). . . 91

4.9 Comparison of the cumulative distribution of prediction accu-
racy across different algorithms. 92

4.10 User response time and system execution time. 93
4.11 The survey used for user onboarding at PlateJoy. (The top four

questions are included.) . 98
4.12 The workflow of the end-to-end user testing. We compare Yum-

me (blue arrows) to the baseline method (violet arrow) that
makes recommendations solely based on nutritional expecta-
tions and dietary restrictions. 99

4.13 The cumulative distribution of the acceptance rate for both rec-
ommender systems. 101

4.14 The distribution of the acceptance rate difference between two
recommender systems. The difference is normally distributed
(A Shapiro Wilk W test is not significant (p = 0.12)), and a paired
Student’s t-test indicates a significant difference between the two
methods (p < 0.0001). 102

4.15 Comparison of nutritional facts among participants’ favorite
recipes, accepted Yum-me recommendations, and accepted base-
line recommendations. The recipe is accepted if it was dragged
into the yummy bucket. The mean values are normalized by the
average amount of corresponding nutrient in the favorite recipes
(orange bar). (Only 7 out of 9 nutritional goals were chosen by
at least one participant.) . 103

4.16 A qualitative analysis of Yum-me recommendations. Images on
the left half are sampled from users’ top-20 favorite recipes; Im-
ages on the right half are the ones recommended to the users.
The number under each food image corresponds to the amount
of calories, unit: kcal/serving. 104

4.17 The entropy of the preference distributions in different iterations
of online learning. (Using data from 48 participants with no di-
etary restrictions.) . 105

5.1 The web user interface designed for participants to indicate their
topic-wise intentions. Participants first select up to eight gen-
eral topics they want to listen to and then optionally select fine-
grained topics. The topics are defined using podcast categories
in iTunes. 118

xiv

5.2 The web user interface designed for participants to subscribe to
channels during onboarding. The interface presented a list of
podcast shows, and participants were instructed to subscribe to
up to ten of them. For the control group (POP), channels were or-
dered by their popularity on iTunes, whereas for the experimen-
tal group (ASP), the ordering was determined by channels’ align-
ment to participants’ topic-wise intentions. Both groups shared
the same set of candidate content. 119

5.3 The library and home pages of the customized podcast mobile
app. The library page showed the channels to which a user has
subscribed, and the home page chronologically presented a list
of episodes. For the control group (SUB), the episodes were re-
trieved from subscribed channels, whereas for the experimental
group (MIX), those episodes were mixed with the ones selected
from not-subscribed channels based on a CF model. 121

5.4 The discover page of the customized podcast mobile app. The
page grouped channels into topic-wise categories and presented
a trending chart that ordered channels according to their popu-
larity on iTunes. This page allowed users to readily explore and
subscribe to new channels. 121

5.5 The cumulative distributions of users over the number of sub-
scriptions and listening time. These figures show the extent to
which participants were actively subscribing and listening to
podcasts throughout the study. A vertical line in these figures
represents a group of users with a similar activity level. We note
that these commonly-used aggregated measures are not statisti-
cally different across the four groups. In other words, they do not
reflect the different composition of content consumption across
these groups. These differences are critical to understand the ef-
fects of recommendations on individual growth and experience. 125

5.6 The distribution of podcast listening instances over hour of day
and day of week. The aggregation is across all participants.
Again we note that no statistical difference is observed across
the four groups. 127

5.7 The cumulative distributions of subscriptions and listening time
over channels ordered by popularity. The popularity is defined
as the number of subscription (a, b) and the amount of listening
(c). These figures show the extent to which participants’ con-
tent consumption was concentrated on a small set of popular
items. A linear line in the figure represents uniformly distributed
consumption over all channels. During onboarding, the POP in-
tervention resulted in significant popularity bias in participants’
subscriptions, but in the field, no significant effect from experi-
mental factors is observed. 128

xv

5.8 The top five most interacted content source during onboarding
and in the field, categorized by 2 × 2 groups. Each square icon
represents a podcast channel. These qualitative results demon-
strate how users’ content consumption in the field was jointly
affected by users’ intentions and recommendation systems. . . . 129

5.9 The distribution of user intentions over podcast topics (cate-
gories). Topics are sorted by their popularity descendingly. Par-
ticipants’ intended topics were diversely spread, with most of
the topics liked by less than half of the participants. 129

5.10 The cumulative distributions of users over the percentage of the
topicwise intention-related subscriptions and listening. In the
above figures, an x = 1.0 curve denotes that all users’ consump-
tion is related to their topicwise intentions, while an x = 0.0
curve denotes that none is related. The ASP intervention during
onboarding is shown to significantly increase the topic-related
onboarding subscriptions, topic-related field subscriptions, and
topic-related field listening. The FIE factor and the interaction
ONB×FIE have no significant effect. 130

5.11 The groupwise average percentage of the topicwise intention-
related subscriptions and listening. The ASP intervention signif-
icantly improves the topic-relatedness of onboarding subscrip-
tions, field subscriptions, and field episode listening by 72.1%,
36.5%, and 24.9% respectively. The FIE and the interaction
(ONB×FIE) have no significant effect. 131

5.12 The percentage of subscriptions and listening from not-
subscribed channels: (a) cumulative distributions over users,
and (b) groupwise average. In (a), a x = 1.0 curve denotes
that users do not listen to episodes from subscribed channels,
while a x = 0.0 curve denotes that all listening comes from sub-
scribed channels. The MIX intervention is shown to significantly
increase the exploration rate by 127.5%. The ONB and the inter-
action (ONB×FIE) have no significant effect. 132

5.13 Participants’ satisfaction (the averaged ratings of all indica-
tors): (a) cumulative distributions of aggregated ratings, and
(b) groupwise average ratings. The interaction between two
factors (ONB×FIE) significantly affects satisfaction — MIX im-
proves satisfaction if participants were onboarded with the ASP,
otherwise MIX shows negative effects. No single factor alone has
a significant effect. 133

xvi

6.1 A modular view of recommendation algorithms. Each algorithm
(R-1 to R-4) is a structured ensemble of reusable modules under
three categories: extraction module, fusion module, and interac-
tion module. The color codex is shared throughout this chapter.
Arrows in the figure represent data flows. 142

6.2 The architecture of OpenRec. A recommender is built out of
modules. All three components (Module, Recommender, and
Utility) can be seamlessly used together to conduct training,
evaluation, experimentation, and serving of recommenders. . . . 147

6.3 Standard interfaces of the Recommender abstraction. It contains
procedures for constructing computational graphs, and func-
tions for model training, testing, saving and loading. 148

6.4 The structure of the Module abstraction (Left: inputs, Right: out-
puts). 149

6.5 Implementing BPR with OpenRec (45 lines). We use rectangles
to represent functions in a Recommender and shade the reusable
modules and implementations. An arrow denotes an adoption
or an inheritance. (Lines of code does not include blank and im-
port lines.) . 155

6.6 Testing performance on tradesy.com dataset [67] in terms of AUC
(BPR-OpenRec, BPR-original, and BPR-MyMediaLite). 156

6.7 Implementing VBPR with OpenRec (50 lines). We use the same
annotations as Fig. 6.5. 157

6.8 Testing performance on tradesy.com dataset [67] in terms of AUC
(VBPR-OpenRec and VBPR-original). 158

6.9 Implementing UserVisualPMF with OpenRec (32 lines). We use
the same annotations as Fig. 6.5. 161

6.10 Testing performance in book recommendations in terms of AUC
and Recall@K. 163

6.11 Implementing VisualCML with OpenRec (7 lines). We use the
same annotations as Fig. 6.5. The model and training pseu-
docode are presented in Listing 1 and 2 respectively. 163

6.12 Implementing an iterative and temporal model with OpenRec
(57 lines). We use the same annotations as Fig. 6.5. 165

xvii

CHAPTER 1

INTRODUCTION

Recommendation systems (recommenders) are algorithmic modules that se-

lect and present information items to individuals in a personalized fashion.

These modules have been widely incorporated into a variety of digital services,

including e-commerce websites, content platforms, and education and wellness

applications. Beyond their significant commercial value, recommenders have

also implicitly modulated people’s daily actions and choices. For example, the

merchandise shown by e-commerce platforms (e.g., Amazon, Etsy, and FreshDi-

rect) can influence people’s buying and eating decisions, the information pre-

sented by content services (e.g., YouTube, Facebook, and Twitter) may affect the

activities that people choose to engage in, and the suggestions made by online

education and career websites (e.g., Coursera and LinkedIn) tend to modulate

the courses that students take and the jobs to which they apply. This poten-

tial impact on individuals challenges the design of recommendation systems

to balance commercial interests and individuals’ utility. This thesis addresses

the research question of how to build user-centric recommendation systems

optimized for end-user benefit, which complements the traditional objective of

promoting commercial metrics, such as sales and click-through rates.

Traditional commercial recommenders are optimized to promote users’ im-

plicit feedback, which refers to users’ actions that reveal their positive prefer-

ences, such as click [73], view [174], watch [32], listen [158], share [63], etc. These

systems take a user’s feedback history as input and predict how likely the in-

dividual is to interact with each item positively. The higher-scoring items are

then recommended first. While implicit feedback signals are advantageous for

1

their large volume and wide availability, they are limited in capturing recom-

menders’ utility to individuals for two main reasons. First, implicit feedback

is biased. Users can only interact with the items that they see [131, 172]. In

reality, the items presented to users are not randomly chosen but rather selected

by systems optimized for biased metrics, such as inferred user preferences, key

performance indicators (KPIs), etc. Therefore, implicit feedback is not missing

at random. Second, implicit feedback provides an incomplete view of user

preferences. On the one hand, cold-start users can only be partially profiled

using implicit feedback [72, 130, 188] because newcomers often have limited

or no interactions with a platform. On the other hand, implicit feedback does

not reflect whether or not recommendations are aligned with users’ aspirational

preferences [179], even though they may engage users at present.

In light of the above limitations, this thesis explores three research directions

to empower user-centric recommendation systems: (1) debiasing implicit feed-

back, (2) leveraging richer data sources, and (3) interactive preference learning.

In addition, this thesis designs and introduces an open-source tool that general-

izes application-specific recommendation algorithms through modularization.

Beyond commercial interests and individuals’ utility, recommendation sys-

tems also play important roles in societal issues, such as political polarization,

fairness, and social welfare. These topics are critically important directions for

future research, but they are beyond the scope of this thesis. We hope this the-

sis can open up future explorations of recommenders that contribute to both

societal and individual good.

2

The following are further summaries of our contributions.

1.1 Debiasing implicit feedback

Implicit feedback is Missing-Not-Completely-At-Random (MNCAR) because

online platforms are subject to popularity bias (i.e., popular items are more

likely to be presented and interacted with). As a result, when it comes to eval-

uating recommendation algorithms, the widely used Average-Over-All (AOA)

approach is biased toward accurately recommending popular items [172]. In

this thesis, we investigate the bias of AOA and develop a debiased and prac-

tical offline evaluator for implicit MNCAR datasets using the Self-Normalized

Inverse-Propensity-Scoring (SNIPS) [147] technique. Through extensive exper-

iments using four real–world datasets and four widely used algorithms, we

show that (1) popularity bias widely manifests in item presentation and inter-

action; (2) evaluation bias due to MNCAR data pervasively exists in most cases

where AOA is used to evaluate implicit-feedback based recommenders; and (3)

the debiased estimator significantly reduces the bias of AOA by more than 30%

in the Yahoo music dataset in terms of Mean Absolute Error (MAE).

1.2 Leveraging richer data sources

Implicit feedback is merely the tip of the iceberg in the sea of digital traces that

individuals generate. From topics referred to in social media or email, to pho-

tos captured through smartphones, and to software usage history, these rich

data sources are potentially less biased and more comprehensive in reflecting

who we are and what we are interested in [72, 48, 174]. In this thesis, we ex-

3

plore the utility of unstructured log-trace data generated by users of software

applications [174, 175]. These traces contain hidden clues to the intentions and

interests of those users, but service providers may find it challenging to uncover

and exploit them. We propose a framework for personalizing software and web

recommendation systems by leveraging such unstructured traces. We use six

months of Photoshop usage history and seven years of interaction records from

67,000 Behance users to design, develop, and validate a user-modeling tech-

nique (which we call the utilization-to-vector or util2vec model) that discovers

highly discriminative representations of Photoshop users. We demonstrate the

promise of this approach on three exemplary recommenders: (1) a practical user

tagging system that predicts areas of focus for millions of Photoshop users; (2) a

two-phase recommendation model that enables cold-start personalized recom-

mendations for new Behance users who have Photoshop usage data, which im-

proves recommendation quality (Recall@100) by 21.2% over a popularity-based

recommender; and (3) a novel inspiration engine that provides real-time per-

sonalized inspirations to artists.

1.3 Interactive preference learning

Passively collected offline data is limited when it comes to modeling cold-start

users and serving users’ aspirational preferences. For example, in the domain

of diet and nutrition, food–journaling–based meal recommenders often require

a prolonged learning period because of the significant journaling burden, and

they are agnostic about people’s health objectives; similarly, on content plat-

forms, the information that users consumed in the past may not align with their

aspirations. In this thesis, we address these problems by developing interactive

4

systems to elicit users’ current and aspirational preferences that are not reflected

in the offline data. Specifically, we design, build and evaluate two systems.

The first system, named Yum-me [173, 177], is a personalized nutrient-based

recipe recommender system designed to meet individuals’ nutritional expecta-

tions, dietary restrictions, and fine-grained food preferences. Yum-me enables

a simple and accurate food preference profiling procedure via a visual quiz-

based user interface. The system conducts recommendations by leveraging the

learned profile to re-rank nutritionally appropriate food options. Our design

of Yum-me makes two main research contributions: (1) an open source state-

of-the-art food image analysis model, named FoodDist, that can be used for a

wide variety of dietary applications; and (2) a novel online learning framework

that learns food preferences from item-wise and pair-wise image comparisons.

In an online study with 227 anonymous users, the framework outperformed

other baselines by a significant margin. We conducted an end-to-end evalua-

tion of Yum-me through a 60-person lab study, where Yum-me improved the

recommendation acceptance rate by 42.63% without sacrificing nutrition-wise

performance, as compared to existing systems that only consider people’s nu-

tritional needs.

The second system is an intention-informed recommendation system [179]

for spoken word content (podcasts) [180]. We modify a commercial podcast app

to include a recommender that elicits users’ stated intentions at onboarding,

and a collaborative filtering (CF) recommender during daily use. To compare

the effects of intention informed recommenders with classical intention agnos-

tic systems, we conducted a 2 × 2 randomized controlled field experiment with

105 participants. Our study suggests that: (1) Intention-aware recommenda-

5

tions can significantly raise users’ interactions (subscriptions and listening) with

channels and episodes related to intended topics by over 24%, even if such a

recommender is only used during onboarding. (2) The CF-based recommender

doubles users’ explorations on episodes from not-subscribed channels and im-

proves satisfaction for users onboarded with the intention-aware recommender.

1.4 Generalization of recommendation algorithms

State-of-the-art recommendation systems, including user-centric recom-

menders, have gone beyond simple user-item filtering and are increasingly so-

phisticated, comprised of multiple components for analyzing and fusing di-

verse information. Unfortunately, existing frameworks do not adequately sup-

port extensibility and adaptability; consequently, they pose significant chal-

lenges to rapid, iterative, and systematic experimentation. In this thesis, we

design OpenRec [171], an open and modular Python framework that supports

extensible and adaptable research in recommender systems. Each recommender

is modeled as a computational graph that consists of a structured ensemble

of reusable modules connected through a set of well-defined interfaces. We

demonstrate that OpenRec provides adaptability, modularity, and reusability

while maintaining training efficiency and recommendation accuracy. Our case

study illustrates how OpenRec can support an efficient design process to proto-

type and benchmark alternative approaches with interchangeable modules and

enable the development and evaluation of new algorithms.

6

1.5 Thesis organization

This thesis is organized into seven chapters. Chapter 2 presents our algorithm

to infer debiased user preferences from biased implicit feedback data. Chapter 3

develops techniques to learn broader user preferences from richer data sources

for creative professionals. Chapter 4 and Chapter 5 introduce interactive sys-

tems that elicit user preferences not reflected in passively collected offline data.

Chapter 4 focuses on recommending favorable and nutritionally appropriate

recipes, whereas Chapter 5 aims at incorporating users’ aspirations into spoken

word content recommendations. Lastly, Chapter 7 concludes the thesis with

discussions of future research plans.

7

CHAPTER 2

DEBIASING IMPLICIT FEEDBACK: UNBIASED RECOMMENDER

EVALUATION

2.1 Introduction

This chapter addresses the research question of how to eliminate the biases in

implicit feedback to improve the evaluations of recommendation algorithms.

Unlike other machine learning applications, recommenders are notoriously

challenging to evaluate offline because of the biases in user feedback data. Prior

work on Explicit-rating Recommenders (ExplicitRec) [185, 103] revealed that

users give subjective ratings to items, which results in Missing-Not-Completely-

At-Random (MNCAR) ground truth data. It has been widely recognized in the

literature [131, 140, 139, 138, 103] that MNCAR rating data can lead to biased

conclusions. Therefore, many mechanisms are proposed to debias offline rec-

ommender evaluation of rating data [131, 140, 139, 138].

However, existing approaches are not directly applicable to implicit feed-

back, which are much more prevalent and have been widely used by many

state-of-the-art recommendation solutions [71, 36, 174]. Different from explicit

ratings (e.g., those based on a Likert scale), implicit feedback signals are one-

sided and positive only. In other words, an ideal recommender would never

observe user interactions with irrelevant1 items, whereas in ExplicitRec, com-

plete observations assume that each user has a latent preference score for every

item. As a result, for Implicit-feedback Recommenders (ImplicitRec), it is un-

1An item is relevant to a user if the user is interested in interacting with it (e.g., clicking or
viewing it). Otherwise, the item is regarded as irrelevant.

8

clear whether a missing item in a user’s history is not favored by the user or has

simply not yet been observed.

Existing work simplifies the evaluation of ImplicitRec by assuming that pos-

itive signals are Missing-Completely-At-Random (MCAR) [98, 67, 71], i.e., each

favored item is equal-likely to be clicked or viewed by a user. This assump-

tion does not hold in real-world settings because online recommenders manifest

popularity bias [2] (popular items are much more likely to be recommended and

presented to users). Such a bias leads to the phenomenon that trendy items are

more likely to be interacted with by users. Eventually, the Average-Over-All

(AOA) evaluator implicitly places greater weights on the accuracy of serving

popular items than on serving long-tail ones. This may overlook key limitations

of recommendation algorithms, such as under-serving cold start groups [158],

being dominated [2], and exacerbating unhealthy user behavior [154]

To address the MNCAR nature of implicit feedback, we develop an algo-

rithmic framework based on the Inverse-Propensity-Scoring (IPS) technique

used in causal inference [80], which was recently applied to evaluate Explic-

itRec [131]. Specifically, we (1) qualitatively and theoretically demonstrate that

the existing evaluation protocol for ImplicitRec is biased; (2) derive unbiased

performance estimators for major evaluation metrics, including AUC, DCG,

DCG@K, and Recall@K; and (3) conduct extensive experiments using four real-

world datasets (citeulike [162], Tradesy [67], Amazon book [105, 171], and Ya-

hoo music [169]) and four widely used algorithms (BPR [124], PMF [129], U-

CML [71], and A-CML [71]). Our experimental results highlight three key con-

tributions and implications of this chapter:

• The analysis of datasets and trained models (Section 2.4.2) reveals that

9

popularity bias is widely manifested in item presentation (i.e., popular

items are more likely to be presented than long-tail ones) and interaction

(i.e., users tend to interact more with popular items). This implies that

more attention is needed in considering the potentially negative social and

economic impacts of the bias [2, 154].

• The comparisons of the classical AOA evaluator to the unbiased evaluator

proposed herein (Sections 2.4.3 and 2.4.4) demonstrate that AOA is biased

in evaluating most ImplicitRec. The bias may lead to inaccurate judgments

of algorithmic improvements and sub-optimal decisions when it comes to

model selection.

• The unbiased evaluator significantly reduces AOA evaluation error by

more than 30% in the Yahoo music dataset in terms of the mean absolute

error (MAE) (Section 2.5).

Our code is available at https://github.com/ylongqi/unbiased-offline-

recommender-evaluation.

2.2 Related work

This chapter is inspired by three lines of research: (1) debiasing the evaluation of

ExplicitRec, (2) ImplicitRec algorithms and evaluations, and (3) counterfactual

evaluation. In this section, we discuss how this chapter builds upon existing

ideas and contributes new knowledge to the field.

10

https://github.com/ylongqi/unbiased-offline-recommender-evaluation
https://github.com/ylongqi/unbiased-offline-recommender-evaluation

2.2.1 Debiasing the evaluation of ExplicitRec

Previous research has shown that for explicit-feedback recommenders, users’

ratings are MNCAR [131, 140, 139, 138, 103]. This is because people tend to sub-

jectively choose the items they rate, and the selection reflects biases of personal

preferences [131] and opinions [103, 140]. To handle MNCAR data and conduct

unbiased evaluation, previous work assumed that users have latent ratings for

every item, and then use popularity [139] or other predictive models [131] to

estimate the probability that any given rating is observed. However, such a

paradigm is not applicable to implicit feedback, because of two fundamental

differences: Implicit feedback (1) is available only for the subset of items pre-

ferred by users, and (2) is often recorded passively and thus is unlikely to be

intentionally controlled.

This chapter addresses the unique missing patterns of implicit feedback by

extending the IPS framework [131].

2.2.2 ImplicitRec and evaluation

Recently, there has been a trend toward development of recommenders using

implicit feedback signals [73], such as click [162, 71], watch [36], and view [174].

These signals are much richer than ratings. Classical offline evaluation ap-

proaches [98, 67, 162, 71, 174] randomly hold out one interacted item per user

as a testing set and then report the average performance. Such a paradigm has

been shown to be unbiased under MCAR feedback [98]. However, MCAR sig-

nals rarely exist in the real world, because it is very unlikely that a content plat-

form would present items completely at random. In fact, item presentation is

11

often mediated by recommenders that are subject to popularity bias [2].

This chapter points out that under MNCAR user feedback, the existing eval-

uation paradigm is biased. In light of this, we develop a practical and effective

technique to address the bias.

2.2.3 Counterfactual evaluation

Our unbiased evaluator is based on the techniques developed for counterfactual

evaluation [146, 148, 80], which aim to evaluate ranking policies offline based

on the logs collected from online interactive systems. It has been successfully

applied to interactive search [81] and recommendation [96, 148]. Our debiasing

framework is built on the Self-Normalized Inverse-Propensity-Scoring (SNIPS)

estimator proposed by Swaminathan et al. [147].

However, classical counterfactual reasoning operates on interactive logs, for

example, (user1, article1, reward1), ..., (usern, articlen, rewardn), which are differ-

ent from the implicit feedback-based matrix completion task that we consider.

To the best of our knowledge, there has been little research on applying coun-

terfactual estimators to debias ImplicitRec evaluations.

2.3 Unbiased recommender evaluation for implicit feedback

Recommenders built on implicit feedback receive only users’ one-sided (posi-

tive) preference signals, such as clicks and watches. Under complete observa-

tions, user u has a set of preferred items Su among the entire set of items, I (i.e.,

12

Su ⊆ I). An ideal recommendation evaluator calculates the following reward

R(Ẑ) for the predicted item ranking Ẑ.

R(Ẑ) =
1
|U|

∑
u∈U

1
|Su|

∑
i∈Su

c(Ẑu,i), (2.1)

where Ẑu,i is the predicted ranking of item i (among all the items in I) for user

u, and the function c denotes any top-N scoring metric, such as area under the

ROC curve (AUC), discounted cumulative gain (DCG), DCG@K, or Recall@K.

These functions are defined as follows:

AUC: c(Ẑu,i) = 1 −
Ẑu,i

|I|
(2.2)

DCG: c(Ẑu,i) =
1

log2(Ẑu,i + 1)
(2.3)

DCG@K: c(Ẑu,i) =
1{Ẑu,i ≤ K}

log2(Ẑu,i + 1)
(2.4)

Recall@K: c(Ẑu,i) = 1{Ẑu,i ≤ K} (2.5)

Eqn. 2.1 measures idealistic recommendation performance, which assumes

that users would go through all items in the system and interact with every one

that appeals to them. From a practical standpoint, it is impossible to browse

and judge millions or billions of items. As a result, recommenders have access

to only a partial view of Su, denoted by S∗u. For each positive signal (u, i), i ∈ Su,

we use Ou,i to indicate whether (u, i) is observed (Ou,i = 1 if (u, i) is observed,

and Ou,i = 0 otherwise). In addition, inspired by [131], we assume the observa-

tions of every signal to be Bernoulli distributed, i.e., Ou,i ∼ B(1, Pu,i), where with

probability Pu,i = P(Ou,i = 1), (u, i) is observed by a recommender.

In reality, the partial view S∗u is mostly biased and the implicit feedback is

MNCAR. In Section 2.3.1, we show that the AOA evaluator, which is widely

used in the existing literature, is biased, and in Section 2.3.2 we propose an un-

biased evaluator based on the inverse-propensity-scoring (IPS) technique [131].

13

!" !# !$!% !& !' !(

)")$)%)& !# !$!% !')# !" !& !(

!# !$!% !')")$)%)&)# !" !& !(

popular items:

long-tail items:

1 2 3 4 5 6 7 8 9 10 11 12 ranking

*"

*$

)")$)%)&!# !$!% !')# !" !& !(*#

)")#)$)%)&

Figure 2.1: A hypothetical example to illustrate the evaluation bias that
results from use of the AOA evaluator. Three recommenders
generated distinct lists of recommendations, Z1, Z2 and Z3, for
the same user. Among the shaded items that were preferred
by the user, the ones with a solid border were observed by rec-
ommenders. The performance was measured by DCG, and the
results are presented in Table 2.1.

2.3.1 Average-over-all (AOA) evaluator

In prior literature, R(Ẑ) was estimated by taking the average over all observed

user feedback S∗u:

R̂AOA(Ẑ) =
1
|U|

∑
u∈U

1∣∣∣S∗u∣∣∣
∑
i∈S∗u

c(Ẑu,i)

=
1
|U|

∑
u∈U

1∑
i∈Su

Ou,i

∑
i∈Su

c(Ẑu,i) · Ou,i

(2.6)

To intuitively illustrate the bias of the AOA evaluator, we considered a hy-

pothetical platform that served 12 items, as shown in Fig. 2.1. We divided the

items into two groups based on the number of interactions they received: pop-

ular items (a1, ..., a5) and long-tail items (b1, ..., b7). For a specific user, three dif-

ferent recommenders generated distinct ranked lists, Z1,Z2, and Z3, based on

the predicted user preferences. Each item on the platform was either relevant

14

Table 2.1: The true and estimated DCG values for three recommenders in
Fig. 2.1. R(Ẑ) denotes the ground truth. R̂AOA(Ẑ) denotes the
AOA estimations. The AOA estimator outputs larger values
when popular items are ranked higher.

Estimator Z1 Z2 Z3

R(Ẑ) 0.463 0.463 0.494

R̂AOA(Ẑ) 0.585 0.340 0.390

(shaded) or irrelevant (blank) to the user. Among all the relevant items, only

feedback for a partial set was observed (solid border). To encode the popular-

ity bias manifested in ImplicitRec (i.e., user interactions with popular items are

more likely to be observed), we assumed that among the relevant items, 75% of

the popular items and 25% of the long-tail items were interacted with. In addi-

tion, three ranked lists were strategically designed: The Z1 and Z2 ranked lists

had the same true performance on the ranking of relevant items but differed on

the serving of the popular and long-tail groups. The Z3 ranked list achieved the

best true performance.

We calculated the DCG scores (eqn. 2.3) for three recommenders using the

AOA evaluator (eqn. 2.6) and compared the scores to the true performances

(eqn. 2.1). According to the results presented in Table 2.1, Z1 was evaluated as

much more accurate than Z2 and Z3, despite the fact that, in reality, Z2 had the

same performance as Z1, and Z3 performed much better. This demonstrates that

the AOA evaluator is significantly biased toward the accuracy of serving trendy

items; i.e., the estimated R̂AOA(Ẑ) is larger if popular items are ranked higher.

The conclusions made based on such empirical evidence result in incorrect and

even opposite judgments of the relative utilities of recommenders.

15

Basically, the expected outcome of the AOA evaluator does not conform to

the true performance, i.e., EO

[
R̂AOA(Ẑ)

]
, R(Ẑ). We prove this inequivalence

by a counterexample. Suppose that for any user u, among all relevant items

(Su), only one item ku ∈ Su has an observation probability close to 1, so that

P(Ou,ku) = 1 − ε; whereas for the other items, P(Ou,i) = ε, i ∈ Su\{ku}. In this case,

EO

[
R̂AOA(Ẑ)

]
≈ε�1

1
|U|

∑
u∈U c(Ẑu,ku) , R(Ẑ). Next, we present our proposed unbi-

ased performance evaluator as an alternative to the existing AOA evaluator.

2.3.2 Unbiased evaluator

To conduct unbiased evaluation of biased observations, we leverage the IPS

framework [131, 147] that weights each observation with the inverse of its

propensity, where the term propensity refers to the tendency or the likelihood of

an event happening. The intuition is to down-weight the commonly observed

interactions, while up-weighting the rare ones. In the context of this chapter,

the probability Pu,i is treated as the pointwise propensity score. Therefore, the

IPS unbiased evaluator is defined as follows:

R̂IPS(Ẑ|P) =
1
|U|

∑
u∈U

1
|Su|

∑
i∈S∗u

c(Ẑu,i)
Pu,i

=
1
|U|

∑
u∈U

1
|Su|

∑
i∈Su

c(Ẑu,i)
Pu,i

· Ou,i

(2.7)

We prove that given any propensity assignment P, R̂IPS(Ẑ|P) is unbiased.

EO

[
R̂IPS(Ẑ|P)

]
=

1
|U|

∑
u∈U

1
|Su|

∑
i∈Su

c(Ẑu,i)
Pu,i

· EO
[
Ou,i

]
=

1
|U|

∑
u∈U

1
|Su|

∑
i∈Su

c(Ẑu,i) = R(Ẑ)
(2.8)

16

Furthermore, to estimate |Su| and control the variability of the IPS evalu-

ator, we leverage the control variates [147, 131] to derive a Self-Normalized

Inverse-Propensity-Scoring (SNIPS) evaluator. According to the theory of

Monte Carlo approximation [147], the estimation Ŵ of the expectation EX [W(X)]

has a lower variance if a multiplicative control variate V(X) with known expec-

tation EX [V(X)] = v , 0 is introduced, i.e., if Ŵ is calculated as: Ŵ =
∑n

j=1 W(X j)∑n
j=1 V(X j)

v.

While Ŵ is not a completely unbiased estimator, it strongly converges to the true

expectation for large n [147].

In the context of the IPS evaluator, because EO

[∑
i∈S∗u

1
Pu,i

]
= EO

[∑
i∈Su

1
Pu,i
· Ou,i

]
=

|Su|, we can write the SNIPS evaluation as follows:

R̂SNIPS(Ẑ|P) =
1
|U|

∑
u∈U

1
|Su|

EO

[∑
i∈S∗u

1
Pu,i

]
∑

i∈S∗u
1

Pu,i

∑
i∈S∗u

c(Ẑu,i)
Pu,i

=
1
|U|

∑
u∈U

1∑
i∈S∗u

1
Pu,i

∑
i∈S∗u

c(Ẑu,i)
Pu,i

(2.9)

A key challenge in computing R̂SNIPS(Ẑ|P) is to predict the propensity scores

Pu,i. Next, we demonstrate our method, which estimates the propensity scores

based solely on raw observations, without requiring any auxiliary information.

2.3.3 Estimating propensity scores

We assume that the propensity score Pu,i is user independent, i.e., Pu,i = P(Ou,i =

1) = P(O∗,i = 1) = P∗,i. This simplified assumption is made to address the lack

of auxiliary user information in many user–item interaction records.2 We derive

P∗,i by constructing a two-step generative process of user–item interactions: (1)

2This assumption may be relaxed in cases where auxiliary user information is available. We
discuss this issue in Section 2.6.

17

Select, where a recommender system selects a set of items to present to a user;

and (2) Interact, where the user browses the recommended items and interacts

with the ones she likes. Therefore, P∗,i can be calculated as follows:

P∗,i = Pselect
∗,i · Pinteract|select

∗,i , (2.10)

where Pselect
∗,i is the probability that item i is recommended and Pinteract|select

∗,i is

the conditional probability that the user interacts with item i given that it is

recommended.

Since implicit feedback is passively recorded and is less likely to be subjec-

tively manipulated, we assume that Pinteract|select
∗,i = Pinteract

∗,i , i.e., the user interacts

with all the items she likes in the recommended set, and the user’s preferences

are not affected by recommendations.3 Also, because Pinteract
∗,i is user indepen-

dent, it is proportional to only the item’s true popularity ni (the number of occur-

rences in the complete observation):

P̂interact
∗,i ∝ ni (2.11)

Because items that are frequently interacted with are more likely to be rec-

ommended in ImplicitRec [2], the probability Pselect
∗,i is modeled using n∗i (the

number of times item i is interacted with) as a covariate. Specifically, we follow

a common template that accurately captures the popularity bias [139], which

assumes that Pselect
∗,i conforms to a power-law distribution parameterized by γ:

P̂select
∗,i ∝ (n∗i)γ (2.12)

Therefore, according to the constructed generation process, P̂∗,i depends on

3In reality, user–item interactions may be affected by the order of presentation of the items,
and users’ preferences may be shaped by recommendations in the long term. Modeling these
effects may further improve the evaluator’s performance (as discussed in Section 2.6).

18

only two variates, n∗i and ni:

P̂∗,i ∝ (n∗i)γ · ni, (2.13)

where ni =
∑

u∈U 1 [i ∈ Su] and n∗i =
∑

u∈U,i∈S∗u O∗,i.

However, ni is not directly observable. To address this problem, we observe

that n∗i is sampled from a binomial distribution4 parameterized by ni, i.e., n∗i ∼

B(ni, P∗,i). Therefore, a relationship between ni and n∗i can be built by bridging

the generative model (eqn. 2.13) with the following unbiased estimator:

P̂∗,i =
n∗i
ni
∝ (n∗i)γ · ni (2.14)

Therefore, ni ∝ (n∗i)
1−γ

2 . We use this as a replacement for the unobserved ni in

eqn. 2.13, which results in an unbiased P̂∗,i estimator that is determined by only

the empirical counts of items:

P̂∗,i ∝
(
n∗i

)(γ+1
2

)
(2.15)

Different values of the power-law exponent γ affect the propensity distribu-

tions over items with different observed popularity levels. A larger γ leads to

lower propensity scores for long-tail items and higher scores for popular ones.

In deployed systems, the exponent can be empirically predicted (Section 2.4.3).

2.4 Experiments with biased feedback and the evaluator

To more thoroughly understand the nature of MNCAR implicit feedback

and the proposed unbiased evaluator, we studied three large-scale real-world

datasets and four recommendation algorithms. Our experiments are comprised

4O∗,i satisfies the Bernoulli distribution.

19

of three parts: (1) investigating how popularity bias is manifested in real-world

platforms, (2) exploring properties of the power-law exponent, and (3) under-

standing debiasing effects of the unbiased evaluator.

2.4.1 Experimental setup

To describe the setup of the experiments, we review the datasets and algorithms,

describe the recommendation model implementations with OpenRec [171], and

present the details of model training.

Datasets

We used three datasets of varied size and sparsity (# interactions
users×# items). For each

dataset, we randomly and independently hold out 15% of user–item interac-

tions for validation and 15% for testing, and we used the remaining 70% of

records for training. During testing, we excluded cold-start users and items

that have no record in the training set.

• citeulike [162]. citeulike is a reference management service, where schol-

ars curate article collections based on their preferences and professional

needs. We used the dataset collected by Wang et al. [162] and treated “sav-

ing an article” as a positive implicit feedback signal. The dataset contains

204,986 interactions between 5,551 users and 16,980 items (sparsity: 2e-3).

• Tradesy [67]. Tradesy is a large second-hand retail market for clothing and

fashion. We used the dataset released by He et al. [67], and treated “want

20

an item” and “bought an item” as positive signals. The final dataset in-

cludes 19,243 users, 165,906 wanted or bought items, and 394,421 interac-

tions (sparsity: 1e-4).

• Amazon book [105, 171]. The Amazon book dataset was derived from

the original Amazon review dataset [105, 171]. The dataset records users’

Amazon purchasing history under the book category. The dataset covers

99,473 users, 450,166 books, and 996,938 transactions (sparsity: 2e-5).

Algorithms

We considered recommendation models with different training procedures

(pairwise and pointwise) and architectures (matrix-factorization based and

metric-learning based).

• Bayesian Personalized Ranking (BPR) [124]. BPR is based on the general

framework of matrix factorization that learns vector representations for

users and items. Specifically, user u’s preference toward item i is modeled

as x̂u,i = vT
u vi + βi, where v∗ denote representations, and βi denotes the item-

specific bias. Built upon the scoring function x̂u,i, BPR trains the model

parameters on (u, i, j) triplets (i and j represent interacted item and non-

interacted item respectively) using a pairwise ranking based optimization

framework that minimizes the following loss.

min
Θ

∑
(u,i, j)∈D

− ln (x̂u,i − x̂u, j) + λΘ‖Θ‖, (2.16)

where D is the set of triplets that are randomly sampled from the training

dataset and Θ is the set of model parameters.

21

• Collaborative Metric Learning with Uniform Weights (U-CML) [71]. U-

CML is trained on the same (u, i, j) triplets as BPR, but instead of modeling

user–item scores using dot products, U-CML leverages the Euclidean dis-

tance metric to regularize the embedding space, i.e., x̂u,i = βi − ‖vu − vi‖
2,

where all representations are bounded within a unit sphere. Another dif-

ference between U-CML and BPR is that U-CML minimizes the pairwise

hinge loss:

min
Θ

∑
(u,i, j)∈D

[
m + x̂u,i − x̂u, j

]
+

+ λΘ‖Θ‖
2 (2.17)

• CML with Approximate-Rank Weights (A-CML). U-CML model ran-

domly samples the triplets from the training set, making most of them

become trivial samples as the training proceeds. Therefore, as suggested

by Hsieh et al. [71], we leveraged the approximate-rank weighting tech-

nique [164] to adjust the weight of each training instance:

min
Θ

∑
(u,i, j)∈D

wu, j

[
m + x̂u,i − x̂u, j

]
+

+ λΘ‖Θ‖
2, (2.18)

where wu, j = log(rank(u, j) + 1) and rank(u, j) is the rank of item j in user

u’s recommendation list. The rank can be estimated by sequential [164] or

parallel [71] sampling. To speed up the training, we sampled 10 negative

items in parallel for each observed user–item interaction, as suggested by

Hsieh et al. [71].

• Probabilistic Matrix Factorization (PMF) [129]. PMF is a pointwise

trained recommendation model, i.e., it is built upon pairs (u, i). The model

is optimized to minimize the following regularized square error:

min
Θ

∑
u,i

cu,i(ru,i − x̂u,i)2 + λΘ‖Θ‖
2, (2.19)

where ru,i = 1 if user u interacted with item i, and ru,i = 0 otherwise. Be-

cause of the sparsity of the interactions, cu,i is set to a higher value for

22

ru,i = 1 than for ru,i = 0. In our experiments, cu,i was set to 1 and 0.25,

respectively, for those two cases.

Implementations and training

We implemented the algorithms based on the OpenRec framework [171]. The

dimensionality of user and item representations was set to 50 for citeulike and

to 100 for the other datasets. Each model was trained using the Adam opti-

mizer [84] with a batch size of 8K. Because of differences in the sizes of the

datasets, the models were trained for 50K, 120K, and 200K iterations5 under

citeulike, tradesy, and Amazon book, respectively. We conducted model selec-

tion [131] for each algorithm–metric pair by training recommenders with differ-

ent regularization parameters, i.e., λΘ ∈ {0.1, 0.01, 0.001, 1e−4, 1e−5}. The optimal

training iteration and λΘ value are determined by the evaluation on the valida-

tion set. The recommendation performances are finally reported on the held-out

testing sets. Because of the large item space, it is computationally infeasible to

compute rankings over all items. Therefore, for each user, we randomly and in-

dependently sample 200 items with which users have not interacted before and

compute rankings over the sampled sets. This is a common approach adopted

by recent literature [171].

5An iteration is defined as a feed forward and a backward propagation using a batch
(size=8K) of randomly sampled training data.

23

100 101 102 103 104

Sorted items
0

100

200

n
* i

citeulike

100 101 102 103 104 105

Sorted items
0

10

20

30

40

n
* i

Tradesy

100 101 102 103 104 105

Sorted items
0

200

400

n
* i

Amazon book

Figure 2.2: The distribution of n∗i (the observed number of interactions
with item i) in the three datasets. The items are presented in de-
scending order of n∗i . The horizontal axis is log scaled for better
visualization. In all datasets, the n∗i distribution is skewed and
the user interactions are significantly biased.

2.4.2 Investigating popularity bias

We initially conducted an experiment to understand to what extent popularity bias

is manifested in real-world recommendation systems. Specifically, we investigated

two kinds of bias related to popularity: (1) interaction bias (i.e., that users tend

to interact more often with popular items), and (2) presentation bias (i.e., that

recommenders unfairly present more popular items than long-tail ones).

However, in existing datasets, interaction bias is barely separable from pre-

sentation bias [132], since a user can interact with an item only if it is presented.

Therefore, we resorted to the joint effects of the two kinds of bias, which are

manifested in the distribution of n∗i , i.e., the number of times users interact

with each item. Intuitively, an unbiased platform should expect users to in-

teract broadly. As a result, user attentions are likely to be evenly distributed.

On the contrary, if a platform is highly biased, then user interactions tend to be

more concentrated, which leads to dominance by a small set of items. We show

the n∗i distribution for all i ∈ I in Fig. 2.2. Given that the horizontal axis is log

scaled, the n∗i distribution is significantly skewed: Most of the items received

very few user interactions. For example, on Amazon book, more than 99.9% of

items received fewer than 100 interactions. In addition, the degree of bias varies

24

100 101 102
n *

100

101

102

103

f(n
*)

citeulike
BPR
U-CML

A-CML
PMF

100 101
n *

100
101
102
103
104

f(n
*)

Tradesy
BPR
U-CML

A-CML
PMF

100 101 102

n *

10−1

101

103

105

f(n
*)

Amazon book

BPR
U-CML

A-CML
PMF

Figure 2.3: Empirically estimated f (n∗) on the three datasets and the four
recommendation algorithms. f (n∗) denotes the average num-
ber of times that an item with observed popularity n∗ was rec-
ommended. Both axes are log scaled. Therefore, exponential
growth is linear in the figure. All settings manifest significant
presentation bias.

across datasets: The Amazon book dataset is the most popularity biased, while

the tradesy dataset is the least popularity biased.

For the presentation bias, we measured the average number of times that an

item with the observed popularity n∗ ∈ [1,max(n∗i)] was recommended, denoted

by f (n∗). An unbiased system should expect a relatively flat f (n∗) with a small

slope, whereas a biased recommender may produce linearly or exponentially

growing f (n∗). We treated the top 50 recommendations that the trained recom-

menders made for every user as recommended items, and f (n∗) was computed

as follows:

f (n∗) =

∑
i∈I 1(n∗i = n∗) · Ni∑

i∈I 1(n∗i = n∗)
, (2.20)

where Ni is the frequency of item i in all users’ top 50 recommendations. For

each user, the recommendation list was computed over the complete item set I,

excluding items that the user had already interacted with in the training set. In

Fig. 2.3, we show the empirically estimated f (n∗). All three f (n∗) curves appear

to be mostly monotonic, with small variations, which suggests that an item with

small n∗i is much less likely to be presented, compared to the ones with larger

n∗i . Also, different algorithms tend to manifest diverse patterns. For example, in

25

Amazon book, BPR and A-CML are more likely to present long-tail items than

PMF and U-CML.

To sum up the findings, we demonstrated that both forms of popularity bias

pervasively exist on platforms that use the mainstream recommendation algo-

rithms. Although the amount of bias varies across platforms and algorithms, it

appears to be highly significant. In addition, the estimation of presentation bias

provides a mechanism for gaining an empirical understanding of the properties

of the power-law exponent (eqn. 2.15), which is discussed next.

2.4.3 Exploring the power-law exponent

To understand the properties of γ, we estimated its value by running simula-

tions on offline datasets. The shape of the probability distribution P̂select
∗,i , param-

eterized by γ, was most likely to be affected by two factors: the recommendation

algorithm (which controls what to select) and the content platform (which deter-

mines what is available). Therefore, we predict a value of γ for each algorithm–

platform pair. Because P̂select
∗,i is determined by only an item’s observed popu-

larity n∗i : P̂select
∗,i ∝ (n∗i)γ ∝ f (n∗ = n∗i). Estimating the value of γ is equivalent to

solving the following minimization problem:

min
γ

∑
(x,y)∈T

(
log

(
f (y)
f (x)

)
− γ · log

(y
x

))2

, (2.21)

where T = {(x, y)|x, y ∈ [1,max(n∗i)]∧ x , y}. Because this is a quadratic optimiza-

tion problem, γ can be analytically solved as

γ =

∑
(x,y)∈T log

(
f (y)
f (x)

)
· log

(
y
x

)
∑

(x,y)∈T

(
log

(
y
x

))2 (2.22)

26

Table 2.2: Estimated γ value for every dataset–algorithm pair. The algo-
rithm that achieves the lowest γ in each dataset is shown in bold-
face. The γ estimation is more sensitive to the choice of datasets
than to the choice of algorithms.

Dataset BPR U-CML A-CML PMF Average

citeulike 1.67 1.64 1.55 1.89 1.69

Tradesy 2.96 2.40 2.25 3.07 2.67

Amazon book 1.85 2.11 1.70 1.80 1.87

We fit γ using the calculated f (u∗) from Section 2.4.2. To make the estimation

numerically more stable and robust to outliers, we exclude the top 0.5% of items

that with the highest n∗. The estimated γ values are presented in Table 2.2. We

find that the power-law curve accurately fits f (n∗) with a small average square

error. Also, among all algorithms, A-CML stands out as having the lowest es-

timated γ value in all three datasets, which suggests that it manifests the least

presentation bias. Overall, however, the estimated γ value is relatively stable in

each dataset (the range of values is 0.34, 0.82, and 0.41 for the citeulike, Tradesy,

and Amazon book datasets, respectively).

These experimental results suggest that in practice, if the past recommenda-

tion algorithm is known, use of a power-law distribution can accurately fit and

reconstruct P̂select
∗,i . Even if the accurate recommender is unknown, it is still plau-

sible to roughly predict the γ value by experimenting with classical algorithms

on the given dataset. In our next experiment, we leverage the estimated γ value

to understand the debiasing effects of the unbiased evaluator.

27

0.90

0.91

0.92

0.93

0.94

AU
C

citeulike
BPR
U-CML

A-CML
PMF

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Re
ca

ll@
5

citeulike
BPR
U-CML

A-CML
PMF

0.40

0.42

0.44

0.46

0.48

DC
G

citeulike
BPR
U-CML

A-CML
PMF

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

DC
G@

5

citeulike
BPR
U-CML

A-CML
PMF

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

AU
C

Tradesy
BPR
U-CML

A-CML
PMF

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Re
ca

ll@
5

Tradesy
BPR
U-CML

A-CML
PMF

0.30

0.32

0.34

0.36

0.38

0.40

0.42

DC
G

Tradesy
BPR
U-CML

A-CML
PMF

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

DC
G@

5

Tradesy
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

AU
C

Amazon book
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44
Re

ca
ll@

5
Amazon book

BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11
0.36

0.38

0.40

0.42

0.44

0.46

DC
G

Amazon book
BPR
U-CML

A-CML
PMF

AOA γ (min) = 1.70 γ (avg.) = 1.87 γ (max) = 2.11
0.22

0.24

0.26

0.28

0.30

0.32

0.34

DC
G@

5

Amazon book
BPR
U-CML

A-CML
PMF

Figure 2.4: Comparison of the traditional and unbiased evaluators in mea-
suring the performance of four recommendation algorithms.
The evaluations were conducted over three datasets using four
metrics. Each sub-figure represents a specific dataset–metric
pair. For the unbiased evaluator, three estimated γ values from
Section 2.4.3 were used in the experiments. The unbiased eval-
uator significantly reduces the biased weights that the AOA
method places on the popular items and produces robust and
consistent results for any γ from the estimated range.

2.4.4 Understanding the unbiased evaluator

We compare the outputs from the AOA and the unbiased evaluator under the

same algorithm–platform settings. Specifically, for each dataset, we experiment

on the minimum, average, and maximum γ values from Table 2.2. We evaluate

models against four metrics: AUC, DCG, DCG@5, and Recall@5, as defined

from eqns. 2.2 through 2.5. The experimental results are presented in Fig. 2.4.

Our main findings are discussed below.

• The unbiased evaluator reports lower performance, regardless of the al-

gorithm, dataset, or evaluation metric. As shown in Fig. 2.4, after apply-

28

ing the unbiased evaluator, the estimated recommendation performance

drops significantly. This is because recommenders usually perform worse

on long tail items than on popular ones, and the unbiased evaluator cor-

rects and reduces the biased weights that AOA places on popular items.

This finding reveals that the traditional evaluation method may over-estimate

the performance of recommendation algorithms.

• The unbiased evaluator may amplify, diminish, or flip the relative dif-

ferences reported by AOA. In many cases, the unbiased estimator does

not change the absolute performance difference between algorithms, but

it amplifies the relative difference, e.g., BPR outperforms PMF by 22% and

26% in terms of the Recall reported by AOA and γ(min), respectively. Also,

the unbiased evaluator may diminish (e.g., U-CML vs. BPR under Ama-

zon book-DCG) or flip (e.g., PMF vs. U-CML under Tradesy-DCG) the

relative differences. These observations highlight a caveat that traditional

evaluation may lead to inaccurate judgements or misjudgments of the relative

utility of algorithms.

• The outputs of the unbiased estimator are stable for different γ values

from the estimated range. In all cases, the outputs of the unbiased evalu-

ator are stable for different γ values (min, avg., or max). In other words, as

long as the γ value is from the estimated range, the unbiased evaluator is

expected to produce robust evaluation results.

In summary, these results demonstrate that the unbiased evaluator is robust

and has the potential to more objectively evaluate and compare different recom-

menders. Next, we empirically measure its debiasing performance.

29

2.5 Evaluating debiasing performance

We leverage the Yahoo music ratings dataset [169] to quantify the debiasing

performance of the unbiased evaluator. This dataset contains users’ ratings of

a uniformly randomly selected set of music, which could be used to measure

recommenders’ true performances.

2.5.1 Experimental setup

The original dataset includes a training set and a testing set. The training set

contains 300K ratings given by 15.4K users against 1K songs through natural

interactions, whereas the testing set is collected by asking a subset of 5.4K users

to rate 10 randomly selected songs. To tailor this dataset for experimenting with

implicit feedback, we treat items rated greater than or equal to 4 as relevant, and

others as irrelevant, as suggested in prior literature [71]. We filter the testing set

by retaining users who have at least one relevant song and at least one irrelevant

song in the testing set, and at least two relevant songs in the training set6. We

hold out a biased testing set (biased-testing) from the training set by randomly

sampling 300 songs for each user.

We train the models discussed in Section 2.4.1 using the same protocol but

with fixed hyperparameters (λΘ = 0.001, 10K training iterations, 50 latent fac-

tors). For each model, different evaluators are used to evaluate its performance

against the biased-testing set in terms of AUC and Recall.7 The models’ true

performances are calculated by AOA over the unbiased testing set.

62,296 users satisfy these requirements.
7Recall@30 (biased-testing set) and Recall@1 (testing set) were compared since the biased-

30

Table 2.3: The Mean absolute error (MAE) between evaluators’ outputs
on the biased-testing set and recommenders’ true performances.
Performance was measured against AUC and Recall. For the
unbiased evaluator (UB), four γ values were used in the experi-
ments (γ = 1.5, 2.0, 2.5, 3.0).

(a) Mean absolute error (MAE) on AUC

Model AOA UB(1.5) UB(2.0) UB(2.5) UB(3.0)

U-CML 0.151 0.102 0.099 0.096 0.094

A-CML 0.152 0.103 0.099 0.097 0.094

BPR 0.147 0.109 0.106 0.104 0.103

PMF 0.148 0.103 0.100 0.097 0.095

(b) Mean absolute error (MAE) on Recall

Model AOA UB(1.5) UB(2.0) UB(2.5) UB(3.0)

U-CML 0.401 0.270 0.260 0.253 0.248

A-CML 0.399 0.274 0.264 0.258 0.253

BPR 0.380 0.275 0.268 0.262 0.258

PMF 0.386 0.267 0.259 0.252 0.248

2.5.2 Results

Table 2.3 shows the mean absolute error (MAE) between different evaluators’

outputs on the biased-testing set and the recommenders’ true performances.

For both AUC and Recall, the unbiased evaluator (UB) reduces more than 30%

of the errors in AOA, and UB’s debiasing performance is insensitive to the hy-

perparameter selections. Within the range of [1.5, 3.0], UB consistently produces

significantly lower errors than AOA. However, these results also demonstrate

that UB has ample room for future improvements.

testing set is 10 times as large as the testing set.

31

2.6 Conclusions and discussions

This chapter studied the problem of evaluating ImplicitRec using biased feed-

back data and showed that the widely adopted AOA evaluation is biased to-

ward popularity. Built upon the IPS technique from causal inference, we de-

veloped a theoretically grounded unbiased evaluator and empirically demon-

strated its ability to significantly reduce recommender evaluation biases. How-

ever, the developed unbiased evaluator is limited in its two simplified assump-

tions, which points out promising future research directions. First, in the ab-

sence of detailed meta-information about users, we assumed that the propensity

is user independent and that the probability of an item being presented is de-

termined by its observed popularity. In reality, the propensity may be affected

by user-specific traits and preferences. Future research could investigate more

sophisticated propensity estimation methods, such as building predictive mod-

els to take auxiliary user features into consideration. And we also assumed that

the probability that a user interacts with an item is independent of the proba-

bility that the item is recommended. This does not capture the potential impact

of recommendations and item presentation order on users’ preferences. Future

research could conduct controlled user testing to model these nuanced effects.

In addition, this chapter has implications for the development of recommen-

dation algorithms that intend to be robust to popularity bias. We showed that

a recommender’s accuracy on popular items usually overestimates that rec-

ommender’s true performance. Algorithms that are robust to popularity bias

should explore ways to improve long-tail recommendations, not only through

popularity under-weighting, but also via other techniques such as stratified

sampling, data augmentation, and low-shot learning.

32

CHAPTER 3

LEVERAGING RICHER DATA SOURCES: PERSONALIZED CREATIVE

APPLICATIONS INCORPORATING UNSTRUCTURED SOFTWARE

USAGE TRACES

3.1 Introduction

Debiased implicit feedback, as shown in Chapter 2, is a fruitful data source for

user-centric recommendation systems. However, this data is limited when it

comes to profile cold-start users whose interactions with a platform are much

more sparse. To address this problem, this chapter exploits cross-platform data

sources beyond implicit feedback. Specifically, we focus on modeling software

usage traces to personalize creative applications [174, 175].

User actions while using software applications are recorded for the purpose

of collecting application usage statistics and reproducing program errors. Such

data streams are often underused by service providers. Unlike relatively clean

data traces, such as text, image, and search queries, application usage records

are particularly noisy and unstructured, and companies often find it hard to ex-

tract value from them. However, the social science literature [47, 94] suggests

that people’s activities in professional contexts (such as using software appli-

cations) relate to their social behavior (such as online social interactions). For

instance, the personalities expressed on social platforms could indicate possible

software usage patterns such as proficiency and specialization. Just as social

interaction traces have enabled great success in personalizing online communi-

ties, we believe that integrating application usage traces can further empower

novel, effective and personalized services, as Fig. 3.1 shows.

33

Application Usage Traces

Graphical/Photographical editing Programming Writing

action1 action2 action3 actionn…

user representation learning
(util2vec)

Web servicesSoftware services

Figure 3.1: Services that can benefit from the integration of application
usage traces. By leveraging the user representations learned
from sequences of actions, software service providers and so-
cial platforms can improve their personalized services and em-
power new user experiences.

In this chapter, we explore this largely untapped space with a large num-

ber of creative professionals who use Photoshop for work and actively socialize

on Behance1, a popular large-scale online community where millions of pro-

fessional photographers, designers and artists share their artwork. We demon-

strate that by leveraging the data traces from shared users, Photoshop and Be-

hance can provide significantly improved personalized services and create new

user experiences. Our contributions in this chapter are summarized below.

• We develop and evaluate an approach based on distributed representa-

tion learning, util2vec, that produces high-quality representations of Pho-

toshop users. This model encodes the sequence patterns of the actions

each user has performed, and significantly outperforms the a bag-of-actions

representation by 31.72% Mean Reciprocal Rank (MRR) in the user finger-

1https://www.behance.net/

34

printing task. This approach can be applied to other software applications

(Section 3.4).

• Based on this model, we present three sample applications:

1. We develop and evaluate a practical tagging system for Photoshop

users. The system, for the first time, is able to accurately predict areas

of focus for millions of Photoshop users, who may or may not be

active on Behance. Our model significantly outperforms popularity-

based tagging by 31% (Recall@1), and is able to accurately predict

long-tailed tags that are important but unpopular among the broader

population (Section 3.5.1).

2. We propose a two-phase recommendation method that generates

more accurate recommendations for cold-start users on Behance by

leveraging their previous Photoshop usage traces. The performance

improvements over the popularity baseline are significant on all

tested metrics including area under the ROC curve (AUC) (6.8%) and

Recall@K (21.2% when K = 100). Ultimately, our model enables per-

sonalized recommendations for a massive number of new users who

have Photoshop usage history (Section 3.5.2).

3. We design a novel application, named the inspiration engine, for

Photoshop users by leveraging the co-occurrences of application us-

age traces and uploaded art projects on Behance. The qualitative

results demonstrate how integrating these data sources enable new

user experiences (Section 3.5.3).

Although the data used in this chapter comes from creative professionals,

the models and frameworks studied can be applied to personalize services in

35

numerous similar scenarios. Especially under the evolution of app ecosystems,

user activities across stand-alone software applications and social platforms can

be more easily associated via proprietary or public ids, e.g., Gmail, Facebook,

Creative Cloud, and Github. We believe that this opens up a new and fruitful

space of future user-modeling research for private companies as well as open

source communities. The technical content of the chapter is structured as fol-

lows. We introduce our dataset in Section 3.3, followed by util2vec model in

Section 3.4. Then we present three models and applications leveraging usage

traces in Section 3.5.

3.2 Related work

This chapter benefits from and has implications to multiple threads of user mod-

eling research, and the util2vec model is inspired by previous work on dis-

tributed representation learning.

3.2.1 Distributed representation learning

Distributed representation learning was first introduced in the area of natural

language processing [128]. The goal is to learn a vector space for all words

so that they can be used as inputs to natural language understanding algo-

rithms [108]. Recently, such an approach has been extended and successfully

applied to paragraphs [93], medicine [29] and online purchases [60]. For in-

stance, Grbovic et al. [29] proposed a framework to learn a vector representation

for each product and user given the historical purchasing records, and Choi et

36

al. [29] demonstrated that a similar approach can be applied to learn hierarchical

representations for medical concepts. Our util2vec framework is inspired by the

previous research efforts mentioned above, and to the best of our knowledge,

this is the first work to design a distributed representation learning algorithm

in the domain of software user modeling.

3.2.2 User modeling in online social platforms

For online social platforms, personalization and user modeling are important

tasks, since appropriately matching customers and products is a key to satis-

factory user experiences [90]. Often, the goal of such modeling is to derive a

real-valued vector for each user that summarizes his/her preferences, habits,

and traits in online social platforms. Previous work constructs user vectors by

leveraging intra-platform interactions [149], e.g., ratings [90, 13], purchases [66],

content consumption [6, 158, 73], reviews [183], and social networks [63, 62],

or cross-platform interactions, e.g., personal data streams across email, Twit-

ter, and Facebook [72], and follower-followee connections across YouTube and

Twitter [170]. Learned user representations have been shown to be effective in

many application domains, such as movie [13], television [73], article [72, 161],

e-commerce [66] and social network [62, 63, 6].

3.2.3 Software user and command modeling

Modeling software users’ proficiency based on the actions they perform has

been previously studied in the context of command-recommendation sys-

37

tems [104, 97, 40]. The goal of such a recommender is to help users learn com-

mands in a complex software application. However, the user modeling under

such a circumstance is limited to a specific application because of the narrow

scope that the modeling system is exposed to. In this chapter, we show that by

integrating application usage traces with online social interactions, the potential

applications that such data traces can empower are much broader and diverse.

Specifically, we demonstrate that the Photoshop service provider can conduct

better user tagging and create new user experiences.

Another line of related work around application usage records attempts to

understand the semantic meanings of software actions [3, 52]. By training a

word2vec model [108] on online documents, previous work [3] discovered cor-

respondences and relationships between natural language and software actions,

which was used to fuel tutorial-recommender systems. Although our model is

not directly optimized for this task, we can still extract semantic meanings of

actions and their relationships to users’ social interactions, because the actions,

along with the users, are embedded in the same feature space (Section 3.4).

Although previous research on user modeling has achieved great success,

most models only consider data from within the online social platforms. In

this chapter, we demonstrate that by leveraging users’ digital traces from appli-

cation usage records, online social platforms can better understand users and

provide more effective recommendations.

38

3.3 Dataset

We associate action histories from Photoshop with social interactions on Be-

hance through Creative Cloud accounts as people use them to log into both

services. The reasons why we choose these two platforms are three-folded. (1)

Photoshop is one of the most popular computer software applications used by

creative professionals, and it is an indispensable daily component for people

across many creative occupations including graphical designer, photographer,

and architect. Therefore, it is an ideal context in which to study and impact

users’ working behavior at a large scale. (2) Behance possesses an abundant

user base as millions of creative professionals share their work and socialize

with each other on the platform. Also, it is one of the major websites for creative

talent search. (3) As Photoshop and Behance both serve creative professionals,

there are many shared users for us to investigate.

In Photoshop, all of the actions performed in the application, e.g., buttons

clicked and features applied, are collected from the users who enabled applica-

tion usage reporting. An example of the action sequence is shown in Fig. 3.2.

We target a group of users from the U.S. and their action histories from January

2015 to June 2015. We selected 22 billion actions from 3 million unique Photo-

shop users. From the Behance platform, we collected users’ social interactions in

three categories: (1) self-disclosed areas of focus, e.g., Cartooning, Interaction De-

sign and Fashion; (2) user-uploaded projects; and (3) users’ view and appreciate

history on these projects. An example of the collected information from Behance

is shown in Fig. 3.2. In this chapter, we select 0.86 million behance users where

67 thousand of them are also among the Photoshop users mentioned above.

39

[UID] [SID] 2015-03-09 22:22:16 Open
[UID] [SID] 2015-03-09 22:23:07 New_Slice
[UID] [SID] 2015-03-09 22:23:15 Resize_Slices
[UID] [SID] 2015-03-09 22:24:06 New_Guide
[UID] [SID] 2015-03-09 22:24:12 New_Guide
[UID] [SID] 2015-03-09 22:24:40 Copy_Slice
[UID] [SID] 2015-03-09 22:24:47 Drag_Slice
[UID] [SID] 2015-03-09 22:24:51 New_Guide
[UID] [SID] 2015-03-09 22:25:00 Copy_Slice
[UID] [SID] 2015-03-09 22:25:06 Drag_Slice
[UID] [SID] 2015-03-09 22:25:14 Copy_Slice
[UID] [SID] 2015-03-09 22:25:22 Drag_Slice
[UID] [SID] 2015-03-09 22:25:23 Delete_Slice
[UID] [SID] 2015-03-09 22:25:27 Copy_Slice
[UID] [SID] 2015-03-09 22:25:30 Drag_Slice
…

*UID: User ID *SID: Session ID

(a) An example of action sequence in Photoshop (b) An example of the collected user’s
social interactions on Behance

uploaded projects

areas of focus

projects viewed

Figure 3.2: Data samples of Photoshop usage records (left) and social in-
teractions on Behance (right). We collected three categories of
social interactions for each user: projects viewed, self-disclosed ar-
eas of focus and uploaded projects.

3.4 Software user representation

In this section, we propose an accurate and robust user modeling framework to

model the action histories of software users. We start by introducing the model,

followed by implementation details and performance evaluations.

3.4.1 util2vec framework

Given the action history Hu = (au
1, a

u
2, ..., a

u
n) from a software user u, our goal is to

learn a fixed-length real-valued vector vu that represents his/her software usage

40

V X X X…

! "#$% "#$& "#'%

Concatenation/average (transfer function ℎ)

Softmax with negative sampling

"#

… X

"#'&

Figure 3.3: The architecture of util2vec model. The columns of V and X
store the user representations and action representations re-
spectively. While the action embedding X is shared across dif-
ferent users, user embedding V is user-specific.

pattern. We propose a framework named util2vec to learn the user representa-

tion. In our framework, each user or action is mapped to an M-dimensional

vector, and the vectors are trained to maximize the log probability, as defined in

eqn. 3.1, across all users.

1
T − 2K

∑
u

T−K∑
t=K

log p(au
t |a

u
t−K , ..., a

u
t+K \ au

t), (3.1)

where T is the total number of actions from a given user, and K is the farthest

action before/after the prediction target that is used as the context. In other

words, the size of the sliding window is 2K +1. Intuitively, the model optimized

for the objective defined in eqn. 3.1 will be able to predict any action given the

context of the user and the surrounding actions.

For the prediction, we use the softmax function to model the conditional

probability p(at|at−K , ..., at+K \at) as follows (We omit the superscripts of au
t where

they are clear from context).

p(at|at−K , ..., at+K \ at) =
eyat∑

i eyi
, (3.2)

41

where the vector y = b + Wh(u, at−K , ..., at+K \ at; V, X); the bias vector b and weight

matrix W are parameters of the model, and the columns of the matrices V and

X store the user and action representations respectively, i.e., vu = V[:, u] and

xi = X[:, i] in numpy-style notation. The parameters b,W,V , and X are learned

during training. In the util2vec framework, we use a transfer function h that

averages or concatenates a user representation with representations from 2K

context actions, as Fig. 3.3 shows.

We use Stochastic Gradient Descent (SGD) to conduct the training. The

model is trained with action histories from U unique Photoshop users (U = 3

million), and the user and action representations are updated concurrently. Af-

ter the model is trained, we can infer a new user u’s representation vu by fixing

the parameters b,W, X and only fitting the vector vu to user u’s action history.

3.4.2 Implementation details

Along with util2vec, we use negative sampling and additional action prepro-

cessing steps to speed-up the training and reduce the noise, which will be dis-

cussed next.

Negative sampling

It is expensive to compute the softmax function in eqn. 3.2, since the denomi-

nator involves a sum over a large number of unique actions. To avoid this cost,

we replace the softmax loss with a negative-sampling loss. This strategy has

been successfully applied in the word2vec model [108]. Specifically, for each

42

instance, we randomly sample S actions that are different from the target action

at and approximate the log probability log p(at|at−K , ..., at+K \ at) as follows:

log(σ(yat)) +
∑
s∈S

log(σ(−ys)), (3.3)

where S is a set of randomly sampled actions such that at < S, and σ is the

sigmoid function σ(x) ≡ 1
1+e−x .

Preprocessing and parameter settings

Preprocessing: For each action, we keep it in the vocabulary only if it is used by

at least 100 unique users, and the final size of the vocabulary is 1990. During the

preprocessing, we also add a special separation token [E] between two sessions

to indicate the boundary of action sequences.

Parameter settings: the hyper-parameters of our model are set as follow: (1)

The dimensionality of the representations, M, is set to 500. (2) The sampling

window size, 2K + 1, is set to 11, i.e., K = 5. During training, we use 0.025 as the

initial learning rate and subtract it by 0.005 for each subsequent epoch (5 epochs

in total). For inference, we use 0.1 as the initial learning rate and subtract it by

0.02 for each subsequent epoch (5 epochs in total). Our parameter settings are

consistent with the previous work on word2vec [108], although further tuning

might yield better performance.

3.4.3 User profiling performance

We evaluate the profiling performance of the util2vec model with a user finger-

printing task. We start by holding out the 200 most recent sessions from Photo-

43

shop users who have at least 400 sessions in the first 6 months of 2015 (In total,

15,369 unique users are selected). We then train the util2vec model over the

rest of the action sequences from 3 million Photoshop users. For each of 15,369

users, her action history Hi has been divided into training sub-sequence, i.e.,

Htrain
i = Hi[: −200] and validation sub-sequence, i.e., Hval

i = Hi[−200 :], and an

ideal model should be able to link Hval
i with Htrain

i based on generated profiles.

We infer the user’s representation based on the two subsequences respectively,

i.e., infer vtrain
i from Htrain

i and vval
i from Hval

i . For each user i and her profile vtrain
i ,

we predict which validation subsequence belongs to her using cosine similari-

ties. More specifically, we sort all the validation subsequences Hval
j by the simi-

larities between vval
j and vtrain

i in a descending order, and the ranking of the user’s

real validation subsequence Hval
i is denoted as ranki. Finally, Mean Reciprocal

Rank (MRR), as defined in eqn. 3.4, is used to evaluate the overall fingerprinting

accuracy across N users (N = 15369).

MRR =
1
N

N∑
i=1

1
ranki

(3.4)

We compare util2vec to the bag-of-actions model, which counts the frequency

with which each action occurred. As shown in Table. 3.1, our framework out-

performs the baselines by 31.72% even when tf-idf is leveraged to down-weight

the frequent actions. The experimental results demonstrate that our model is

able to produce user vectors that are more representative and have stronger dis-

criminative power. Generally speaking, for a given user, our representation is

able to discriminate against 31.72% more distractors, and in practice, software

service providers can use such representations to better fingerprint each user.

Along with the user representations, util2vec also learns an action embed-

ding X that encodes semantic similarities between actions. For example, we

44

Table 3.1: User fingerprinting performance (hold-out session retrieval) in
terms of mean reciprocal rank (MRR). The improvement is rela-
tive to the bag-of-actions+tf-idf.

Modeling framework MRR (± standard error of mean)

util2vec 0.8238± 0.0029

bag-of-actions + tf-idf
0.6037± 0.0037

(baseline)

bag-of-actions 0.5944± 0.0037

% of improvement 31.72%

present the nearest neighbors of five Photoshop actions in Table. 3.2 (the neigh-

bors are ranked by the cosine similarities between action embeddings in de-

scending order), and the retrieval results show that the actions are grouped by

their functionalities and usage affinities. The action embeddings may also be

useful for the service improvements as it tells the common software usage pat-

terns among the population. Given the scope of this chapter, we leave further

investigation as future work.

3.5 Applications

In this section, we build and present three applications that can benefit from

the integration of such usage traces: software user tagging, cold-start art project

recommendation and inspiration engine.

45

Ta
bl

e
3.

2:
5-

ne
ar

es
t

ne
ig

hb
or

s
of

se
le

ct
ed

ac
ti

on
s

ac
co

rd
in

g
to

th
e

ac
ti

on
em

be
dd

in
g

X
.

Th
e

ac
ti

on
s

in
th

e
fir

st
ro

w
ar

e
th

e
in

de
x,

an
d

th
e

fiv
e

ac
ti

on
s

be
lo

w
ar

e
th

e
co

rr
es

po
nd

in
g

ne
ar

es
tn

ei
gh

bo
rs

.
(F

ro
m

le
ft

to
ri

gh
t,

th
e

ac
ti

on
s

ar
e

re
la

te
d

to
vi

de
o

ed
iti

ng
,

fo
nt

aw
es

om
e

ic
on

s,
bl

ur
fil

te
rs

,
pa

th
m

an
ip

ul
at

io
ns

an
d

sh
ad

ow
ef

fe
ct

s,
re

sp
ec

ti
ve

ly
.)

m
od

if
y

vi
de

o
cl

ip
fa

ti
m

es
de

le
te

sm
ar

t
fil

te
r

bl
ur

dr
ag

pa
th

in
ne

r
sh

ad
ow

m
od

if
y

vi
de

o
cl

ip
au

di
o

se
t

w
or

k
ar

ea
st

ar
t

ad
d

au
di

o
cl

ip
s

m
ut

e
au

di
o

tr
ac

k

m
od

if
y

au
di

o
cl

ip

fa
us

er

fa
ba

rs

fa
ho

m
e

fa
m

ap
m

ar
ke

r

fa
pl

us

ed
it

fil
te

r
ef

fe
ct

bl
ur

ed
it

fil
te

r
bl

en
di

ng
op

ti
on

s
bl

ur

de
le

te
sm

ar
t

fil
te

r
bl

ur
m

or
e

de
le

te
sm

ar
t

fil
te

r
ga

us
si

an
bl

ur

en
ab

le
fil

te
r

ef
fe

ct
bl

ur

du
pl

ic
at

e
pa

th
s

nu
dg

e
pa

th
s

sc
al

e
pa

th
s

dr
ag

an
ch

or
po

in
ts

di
st

ri
bu

te
ho

ri
zo

nt
al

ce
nt

er
s

in
ne

r
gl

ow

be
ve

l
em

bo
ss

gr
ad

ie
nt

ov
er

la
y

cl
ea

r
ef

fe
ct

s

dr
op

sh
ad

ow

46

3.5.1 Software user tagging

User tagging is an important task for software service providers as accurate

tags are fundamental to effective business and ads targeting, personalization

and recommendation. Essentially, the goal of user tagging is to assign a set of

relevant tags to users based on her behavior in the platform. For Photoshop,

in particular, the tagging task is to predict users’ areas of focus based on the

software usage patterns. For example, an ideal tagging system should be able

to predict whether a user is focusing on web design, UI/UX or architecture based

on the tools that she uses. Traditionally, building such a user tagging system re-

quires a significant amount of domain knowledge and human labor to bootstrap

the training labels. The expert software developers need to manually examine

the raw usage histories and come up with the tags for a large number users. As

imagined, such a human labeling process subjects to diverse human expertise

in recognizing the patterns and is inevitably error-prone and incomprehensive.

We build an accurate Photoshop user tagging system with minimal human

efforts by leveraging interactions on Behance. It is based on the observation that

nowadays, people self-disclose their expertise and areas of focus in many social

platforms for socializing and job hunting. By leveraging the self-disclosed tags

from Behance and the accurate user representations derived from util2vec, we

are able to build a user tagging system that is more accurate and robust than

other approaches.

47

User tagging model

Formally speaking, given U users, along with their self-disclosed tags from Be-

hance, tu and representations vu derived from Photoshop usage traces (tu is a

D-dimensional one-hot encoded vector, where D is the size of the tag set), we

learn a user tagging model f that takes vu as input and produces an output to

approximate tu. As suggested in the image tagging tasks, we train the user tag-

ging model by minimizing the following sigmoid cross-entropy loss:

−
1
U

∑
u

tu log(σ(f (vu))) + (1 − tu) log(1 − σ(f (vu))), (3.5)

where the value of the j-th element in tu, tu[j], is 1 if the j-th tag is selected by

user u, 0 otherwise. Theoretically, model f can be any linear or non-linear func-

tion. In this thesis, we use the linear projection, i.e., f (vu) = b + Wvu, though

adding non-linear components such as multi-layer perceptron (a.k.a. deep neu-

ral networks) might potentially improve the performance.

We train the model using limited-memory BFGS (l-bfgs) [100] over the areas

that are indicated by at least 100 active users on Behance. With such a filtering

criteria, we finally keep 67 labels in the tag pool, which includes, to name but

a few, Graphic Design, Motion Graphics, Character Design, Cinematography, Icon

Design and Computer Animation. Then for any Photoshop user (without any

requirement to be on Behance), we can assign tags by running the classifier over

her application usage history.

Evaluation and analysis

To demonstrate the effectiveness of our tagging system, we conduct an evalua-

tion against 65,331 users who have labeled themselves with at least one of the

48

67 tags. In the final dataset, each user is associated with 1 to 5 tags. We ran-

domly divide the users into a training set and a validation set, which consists of

45,331 and 20,000 samples respectively. The baseline approach that we compare

to ranks the tags purely based on their number of appearances on the Behance

platform. While simple, such a comparison directly reflects the feasibility and

reliability of the tagging system, and it is the best we can achieve without our

tagging model. We use the average recall rate, Recall@K, as defined below, to

quantitatively compare the tagging performance.

Recall@K =
number of correct tags in top K predictions
total number of tags in the ground truth set

(3.6)

The results in Table. 3.3 show that the models leveraging software usage his-

tory significantly outperform the baseline that is agnostic to such information,

and the improvements are particularly remarkable for top-ranked tags—the sys-

tem achieves 31.0% and 35.0% improvements in terms of Recall@1 and Recall@2

respectively. This justifies that, practically, our system can not only predict tags

that are popular, but the ones that are long-tailed. Ultimately, our tagging sys-

tem can make accurate predictions for millions of Photoshop users, who may or

may not be active on Behance, and it is valuable to enable customized business

for the service provider.

Qualitatively, we show the outputs of two tagging approaches for 6 repre-

sentative Photoshop users in Fig. 3.4. For each user, we present the ground truth

tags, the tags predicted by our system and the popular tags. In addition, we

include user’s Behance portfolio (uploaded projects) side-by-side for the illus-

tration purpose. But this information is not available to the tagging algorithm

49

Ta
bl

e
3.

3:
U

se
r

ta
gg

in
g

pe
rf

or
m

an
ce

in
te

rm
s

of
R

ec
al

l@
K

.W
e

us
e

bo
ld

-
fa

ce
fo

r
th

e
be

st
pe

rf
or

m
ed

ap
pr

oa
ch

an
d

fe
at

ur
e

se
t.

T
he

pe
r-

ce
nt

ag
e

of
im

pr
ov

em
en

ts
ar

e
th

e
co

m
pa

ri
so

n
be

tw
ee

n
ut

il2
ve

c
(b

ol
df

ac
e)

an
d

po
pu

la
r

ta
gs

.
O

ur
ta

gg
in

g
sy

st
em

ou
tp

er
fo

rm
s

th
e

po
pu

la
ri

ty
ta

gs
ba

se
lin

e
by

31
.0

%
an

d
35

.0
%

in
te

rm
s

of
R

e-
ca

ll@
1

an
d

R
ec

al
l@

2
re

sp
ec

ti
ve

ly
.

R
ec

al
l@

K
1

2
3

4
5

ta
gg

in
g

w
it

h
so

ft
w

ar
e

us
ag

e
da

ta
ut

il2
ve

c
fe

at
ur

es
(5

00
di

m
)

0.
23

20
0.

35
69

0.
44

66
0.

51
40

0.
56

91

ba
g-

of
-a

ct
io

ns
+t

f-
id

ff
ea

tu
re

s
(1

99
0

di
m

)
0.

22
46

0.
34

89
0.

43
52

0.
50

17
0.

55
59

ta
gg

in
g

w
it

ho
ut

so
ft

w
ar

e
us

ag
e

da
ta

po
pu

la
r

ta
gs

(b
as

el
in

e)
0.

17
71

0.
26

44
0.

36
44

0.
43

09
0.

47
81

%
of

im
pr

ov
em

en
ts

31
.0

%
35

.0
%

22
.6

%
19

.3
%

19
.0

%

50

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Photography Digital Photography Fashion Fine Arts Retouching

Self-disclosed tags (Ground truth) Photography Digital Photography Fine Arts

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Illustration Digital Art Character Design Cartooning Graphic Design

Self-disclosed tags (Ground truth) Illustration Digital Art Cartooning

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Graphic Design Branding Typography Print Design Illustration

Self-disclosed tags (Ground truth) Graphic Design Print Design Typography

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Graphic Design Motion Graphics Photography Digital Art Animation

Self-disclosed tags (Ground truth) Motion Graphics Photography Animation

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Web Design Web Development UI/UX Graphic Design Branding

Self-disclosed tags (Ground truth) Web Design Web Development Graphic Design

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Illustration Graphical Design Drawing Digital Art Painting

Self-disclosed tags (Ground truth) Illustration Painting Digital Art

1 2

3 4
5

*Note that users’ portfolios are included only for illustration purpose. All of the tag predictions are solely based on users’ Photoshop usage traces.

6

Figure 3.4: Six user tagging examples with two different approaches. For
each user, we show her portfolio, top 5 tag predictions with
util2vec feature, top 5 most popular tags and self-disclosed
tags. The tags with orange color are the correct predictions,
and the ones with green color are the ones that are inferrable
from the portfolio but not explicitly selected by the user.

under any circumstance2. From Fig. 3.4, we find that our tagging model is espe-

cially advantageous in the following aspects.

• Tag diversity. We can accurately predict a diverse array of areas of focus

based on the Photoshop usage traces, e.g., Photography (U1, U4), Fine Arts

2The tagging model is mainly designed to classify Photoshop users who do not have Behance
profile.

51

(U1), Web Design (U5), Typography (U2), Cartooning (U3), Animation (U4),

Painting (U6), etc. The tags can be popular on the platform, e.g., Graphic

Design and Photography, or long-tailed (infrequent), e.g., Motion Graphics,

Cartooning, Painting, etc. The prediction results justify the robustness of

our system when it is applied to diverse application usage patterns.

• Generalization power. Although there is a high correlation between user

tags and appearances of uploaded art projects, as shown in Fig. 3.4, some

users didn’t exhaustively select all of the tags that are related. This limita-

tion is partially addressed by the generalization power of our linear clas-

sifier. For example, based on U1’s portfolio (images with same content but

different coloring), there is a high chance that she is focusing on retouch-

ing, which is not selected by herself. Nevertheless, our system can still

make reasonable predictions that include retouching in the top tags. This

characteristic is further verified in the U6 example (tag Drawing).

Overall, we have shown that by modeling application usage traces, we are

able to build an accurate and practical user tagging system for Photoshop with

minimal human effort.

3.5.2 Cold-start art project recommendation

Cold-start is a well-known hard problem in the design of modern recommender

systems. Specifically, user-cold-start [72] refers to the scenario where the recom-

mendations are targeting new users, and item-cold-start [67] describes the case

when a new item needs to be included in the recommendation pool. In user-cold-

start, since we lack the information of her activities within a platform, a typical

52

solution is to either recommend the most popular items, which is not personal-

ized, or leverage side information, such as gender, age [117] and personal data

traces [72]. However, in many cases, when a new user shows up in online so-

cial platforms, their application usage records are already available. If we could

leverage these data traces and properly use them to inform the recommender,

there is a great potential for the social platforms to improve their cold-start rec-

ommendations. For example, Behance might be able to generate better recom-

mendations for 3 million Photoshop users, which is almost 4 times the current

number of Behance users. In this section, we propose a two-phase recommenda-

tion framework that leverages Photoshop usage data in recommending artistic

projects on Behance.

Two-phase recommendation framework

Our recommendation framework is inspired by previous research on content-

based music recommendation [158] that incorporates audio features in solving

item-cold-start problem. We take advantage of the opportunity that a portion

of Photoshop users are already active on Behance and have left a significant

amount of implicit feedback, e.g., project views. Therefore, to build the rec-

ommendation pipeline, we first learn users’ and items’ latent factors from their

project views and then build a function to map the application usage features

extracted from util2vec or bag-of-actions, to the latent factors. In production, for

any Photoshop user, the system conducts cold-start recommendations by first

predicting user’s latent factors based on her application usage data, and then

ranking the items accordingly in the latent space. Formally speaking, we build

the cold-start recommendation system with the following two steps (Fig. 3.5).

53

… …

users’ latent
factors

!

items’ latent
factors

items’ biasusers’ software
usage features

Step 1Step 2

"# "$ %$&#

Figure 3.5: Two-phase recommendation framework. In step 1, we derive
users’ latent factors and items’ latent factors and bias from their
implicit feedback (project views). In step 2, we learn a projec-
tion function f to map software usage features to the corre-
sponding users’ latent factors.

Step 1. The goal of the first step is to learn each user u’s latent factors lu,

and each item e’s latent factors le and bias be, such that the value of rue, which is

defined as rue = lT
u le +be, is proportional to user u’s preference level towards item

e. We learn the parameters by leveraging users’ project views on the platform.

Considering that such signals are implicit feedback, as suggested by [164], we

propose to minimize the following Weighted Approximately Ranked Pairwise

(WARP) loss: ∑
u,e∈Pu,e′∈S \Pu

ln(
Y

Me′
)
∣∣∣1 − lT

u le − be + lT
u le′ + be′

∣∣∣
+
, (3.7)

where S denotes the set of all items, Pu denotes the set of items viewed by user

u, Y denotes the total number of items, and Me′ denotes the number of negative

sampling conducted before encountering an item e′ that produces non-zero loss.

In other words, during training, for each item that the user viewed, we keep

sampling negative items e′ until 1 + lT
u le′ + be′ > lT

u le + be is satisfied.

54

Step 2. In the second step, we learn a projection function f that takes a user’s

software usage feature vu as input and produces output f (vu) to approximate her

latent factors lu. We propose to minimize the l2 loss
∑

u‖ f (vu)− lu‖
2 for regression.

In this thesis, we use linear function f , i.e., f (vu) = b + Wvu. However, any

non-linear function should be directly applicable here, and we leave it as future

work. During training, for step 1, the parameters are learned with mini-batch

Adagrad [39], the dimensionality of the latent factors and learning rate are set

to 50 and 0.05 respectively. For step 2, we use l-bfgs to find the optimal solution

since the optimization target is convex.

In practice, for any cold-start user u and her Photoshop usage feature vu, the

items’ recommendation rankings are based on the value of rue = f (vu)T le + be

where the item with higher value of rue will be recommended earlier.

Evaluation and analysis

We evaluate the performance of our cold-start recommendation system by hold-

ing out a validation set from the view histories of 67,805 users. We randomly

sample 10,000 users among the people who have viewed at least one project

after July 1st, 2015 and regard them as the cold-start users. The most recent

viewed project epu from each cold-start user u is then held for validation, and

the rest 57,805 users’ complete view histories are used for training. All the items

appear in the training set are included in the items pool, which yields 5.8 mil-

lion candidates for recommendation. The time restriction is used to guarantee

the causality of recommendation as the Photoshop usage data is collected from

the first 6 months of 2015. During the validation, for each cold-start user, we

55

only use her software usage data to make the preference prediction, without

relying on any previous views. Therefore, our evaluation results can properly

reflect the system performance when serving cold-start users in practice.

We compare our recommender to the baseline algorithm that ranks the items

based on their popularity (total number of views received). This is shown to

be a very strong baseline for the cold-start recommendations [72]. Similar to

user tagging, we use Recall@K defined in eqn. 3.8 and area under the ROC

curve (AUC) defined in eqn. 3.9 to evaluate the recommendation performance

(N=10,000).

Recall@K =
1
U

U∑
u=1

δ(epu in the top K items for u) (3.8)

AUC =
1
U

U∑
u=1

∑
e′ δ(f (vu)T lepu

+ bepu
> f (vu)T le′ + be′)

size of the items pool
(3.9)

The experimental results shown in Table. 3.4 demonstrate that all of the rec-

ommenders that leverage the Photoshop usage traces and two-phase recom-

mendation framework perform significantly better than the baseline in terms

of Recall@K and AUC. For top-ranked items (Recall@100), in particular, our rec-

ommender outperforms the popularity based recommendation by 21.2%, which

means that the users will potentially appreciate 21.2% more items among which

we recommend. Also, the performance improvement suggests that we are able

to personalize item recommendations to creative professionals who are new to

the Behance platform.

56

Ta
bl

e
3.

4:
A

rt
pr

oj
ec

tr
ec

om
m

en
da

ti
on

pe
rf

or
m

an
ce

fo
r

co
ld

-s
ta

rt
us

er
s

in
te

rm
s

of
R

ec
al

l@
K

an
d

A
U

C
.W

e
us

e
bo

ld
fa

ce
fo

r
th

e
be

st
pe

r-
fo

rm
ed

ap
pr

oa
ch

an
d

fe
at

ur
e

se
t.

Th
e

pe
rc

en
ta

ge
of

im
pr

ov
e-

m
en

ts
ar

e
th

e
co

m
pa

ri
so

n
be

tw
ee

n
th

e
ap

pr
oa

ch
in

bo
ld

fa
ce

an
d

th
e

ba
se

lin
e

m
et

ho
d

(p
op

ul
ar

it
em

s)
.

R
ec

al
l@

K
10

0
20

0
30

0
40

0
50

0
A

U
C

co
ld

-s
ta

rt
re

co
m

m
en

da
ti

on

w
it

h
so

ft
w

ar
e

us
ag

e
da

ta

ut
il2

ve
c

fe
at

ur
es

(5
00

di
m

)
0.

01
43

0.
02

13
0.

02
61

0.
03

13
0.

03
56

0.
82

02

ba
g-

of
-a

ct
io

ns
+t

f-
id

ff
ea

tu
re

s
(1

99
0

di
m

)
0.

01
38

0.
02

09
0.

02
69

0.
03

09
0.

03
50

0.
81

66

co
ld

-s
ta

rt
re

co
m

m
en

da
ti

on

w
it

ho
ut

so
ft

w
ar

e
us

ag
e

da
ta

po
pu

la
r

it
em

s
(b

as
el

in
e)

0.
01

18
0.

01
88

0.
02

18
0.

02
81

0.
02

97
0.

76
83

%
of

im
pr

ov
em

en
ts

21
.2

%
13

.3
%

23
.4

%
11

.4
%

19
.9

%
6.

8%

57

a1, a2, a3, …, an !

util2vec embedding

Figure 3.6: The algorithm framework for the inspiration engine. We learn
a function g to project image features to the util2vec embedding
space such that true actions-image pairs are close to each other
and false pairs are father away.

3.5.3 Inspiration engine

In this section, through a sample application named inspiration engine, we

demonstrate that the data integration can also enable innovative user experi-

ences. The goal of inspiration engine is to provide real-time and personalized

inspirations for creative professionals when they are working in Photoshop, and

the system is able to show the potential outcomes of the actions that have been

or are likely to be performed. Such presentations are inspiring because the

artists can explore a wider range of possibilities that are related but different

from their current work.

Technically speaking, the core component of such application is a search en-

gine that can return art projects that are likely to be produced by a given se-

quence of Photoshop actions. We build the system by leveraging the weak cor-

respondence between the pairs of users’ Photoshop usage traces and the projects

that they uploaded to Behance. With such pairs, we can learn a heterogeneous

joint embedding where the true actions-image pairs are close to each other, and

the false pairs are further away. As shown in Fig. 3.6, for each actions-image

58

Table 3.5: Action-image retrieval performance in terms of Recall@K. We
use boldface for the best performed approach.

Recall@K 100 300 500 AUC

inspiration engine
0.0244 0.0603 0.0884 0.6646

(util2vec features)

inspiration engine
0.0181 0.0488 0.0741 0.6357

(bag-of-actions+tfidf)

random guess 0.005 0.015 0.025 0.5

pair ((ai
1, a

i
2, ..., a

i
n), ci), i = 1, 2, ..., n, we first extract features for the action se-

quence and the image respectively, denoted as vi and zi. In our prototype, we

extract vi from util2vec and zi from the pooling layer (2048 dim) of pre-trained

ResNet [65], the state-of-the-art image feature extractor. Then we learn a func-

tion g to project image features zi to the util2vec embedding space such that the

objective
∑

i‖vi − g(zi)‖2 is minimized.

To prototype the system, we train a linear projection function g with 353,205

actions-image pairs from 43,441 users and validate it over 20,000 held-out pairs

from 20,000 users, i.e., each user contributes exactly one pair in the validation.

There is no user overlap in the training and validation set, and the training is

conducted using l-bfgs algorithm. Quantitatively, we use Recall@K and AUC as

defined in Section 3.5.2 to evaluate the system performance, and the results are

shown in Table. 3.5. The improvements over the random guess baseline justify

that there is a close relationship between the Photoshop usage pattern and vi-

sual appearance of art project. In addition, in Fig. 3.7, we show four qualitative

retrieval results of the inspiration engine (we only show retrieval with a single

action, but our technique is applicable to action sequence as well). The nearest

59

drag_path

enable_filter_effec
t_lighting_effects

rotate_canvas

action Top 10 nearest neighbors in the util2vec embedding space

fade_smart_blur

Figure 3.7: Four image retrieval results of the inspiration engine using
single action. The retrieval results reflect the context where
each action is often used. For example, with fade smart blur,
returned images have blurred background and fading effects,
and with rotate canvas, images tend to have repetitive patterns.

neighbors of each action reflect the scenarios where it is often used. For exam-

ple, the action drag path is heavily used in web design, and the rotate canvas is

typically leveraged to create repetitive patterns. We will conduct an end-to-end

further user study in the future to evaluate the engine.

Through three applications, we observe that the improvements brought by

util2vec, compared to the bag-of-actions+tfidf model, are contingent on the con-

text of end applications. Nevertheless, the performance improvements are sig-

nificant under most of the metrics except Recall@300 in the cold-start recom-

mendation task, so we can safely conclude that util2vec is beneficial in model-

ing unstructured application usage traces, and we may get further gains in the

future by tuning the model parameters and training methods.

60

3.6 Conclusions

This chapter personalized software and web applications for creative profes-

sionals by leveraging Photoshop usage traces. These data enhanced existing

services provided by Photoshop (i.e., accurate prediction of users’ areas of fo-

cus, Section 3.5.1), and Behance (i.e., personalized recommendation for cold-

start users, Section 3.5.2), and enabled new experiences (i.e., inspiration engine,

Section 3.5.3) for millions of users. Our followup work [175] demonstrates that

they can also be used to characterize user skills.

Although we mainly focused on the platforms for creative professionals, our

results suggest that such an integration is a fruitful source for future personal-

ization research, and can potentially have a great impact on a larger population.

For example, personalized applications can be built for programmers based on

their Github usage records, and for journalists based on the usage of document

editing tools. As people’s work and leisure lives are increasingly accompanied

by applications, leveraging digital breadcrumbs that they left behind is crucial

to achieving user-centric recommendation systems.

61

CHAPTER 4

INTERACTIVE PREFERENCE LEARNING: A PERSONALIZED

NUTRIENT-BASED RECIPE RECOMMENDATION SYSTEM

4.1 Introduction

Previous two chapters developed user-centric recommenders using passively

recorded offline user interaction data, such as implicit feedback (Chapter 2) and

software usage history (Chapter 3). However, these data sources are hardly

available in many domains. For example, users’ food consumption history nec-

essary for food preference modeling is often hard to record [31]. In addition,

offline data does not reflect aspirational preferences, e.g., people’s nutritional

and health objectives. To address these limitations, this chapter explores the

opportunity of actively interacting with users as means to learn their current

and aspirational preferences. Specifically, we design and evaluate a recipe rec-

ommender, Yum-me, that satisfies users’ fine-grained food preferences and nu-

tritional expectations without relying on consumption history. Our system ad-

dresses limitations of traditional approaches used to suggest food alternatives

that cater to individuals’ health goals [189, 160, 120], including on-boarding sur-

veys and food journaling:

• Preferences elicited by surveys are coarse-grained. A typical on-

boarding survey asks a number of multi-choice questions about general

food preferences. For example, PlateJoy [120], a daily meal planner app,

elicits preferences for healthy goals and dietary restrictions with the fol-

lowing questions:

62

(1) How do you prefer to eat? No restrictions, dairy free, gluten free, kid friendly,

pescatarian, paleo, vegetarian...

(2) Are there any ingredients you prefer to avoid? avocado, eggplant, eggs,

seafood, shellfish, lamb, peanuts, tofu....

While the answers to these questions can and should be used to create a

rough dietary plan and avoid clearly unacceptable choices, they do not

generate recipe recommendations that cater to each person’s fine-grained

food preferences, and this may contribute to their lower than desired

recommendation-acceptance rates (Section 4.6.3).

• Food journaling approach suffers from cold-start problem and is hard to

maintain. For example, Nutrino [114], a personal meal recommender, asks

users to log their daily food consumption and learn users’ fine-grained

food preferences. As is typical of systems relying on user-generated data,

food journaling suffers from the cold-start problem, where recommenda-

tions cannot be made or are subject to low accuracy when the user has not

yet generated a sufficient amount of data. For example, a previous study

showed that an active food-journaling user makes about 3.5 entries per

day [31]. It would take a non-trivial amount of time for the system to ac-

quire sufficient data to make recommendations, and the collected samples

may be subject to sampling biases as well [31, 86]. Moreover, the photo

food journaling of all meals is a habit difficult to adopt and maintain, and

therefore is not a generally applicable solution to generate complete food

inventories [31].

We address these limitations by leveraging people’s apparent desire to en-

63

gage with food photos1 to create a more user-friendly medium for asking

visually-based diet-related questions. The recommender learns users’ fine-

grained food preferences through a simple quiz-based visual interface [173] and

then attempts to generate recipe recommendations that cater to the user’s health

goals, food restrictions, as well as personal appetite for food. It can be used

by people who have food restrictions, such as vegetarian, vegan, kosher, and

halal. Particularly, we focus on the health goals in the form of nutritional ex-

pectations, e.g., adjusting calories, protein, and fat intake. The mapping from

health goals to nutritional expectations can be accomplished by professional

nutritionists or personal coaches and is out of the scope of this chapter. We

leave it as future work. For the visual interface [173], we propose a novel on-

line learning framework to learn users’ preferences for a large number of food

items through a modest number of interactions. Our online learning approach

balances exploitation-exploration and takes advantage of food image similari-

ties. To the best of our knowledge, this is the first interface and algorithm that

learns users’ food preferences through real-time interactions without requiring

food consumption history.

For such an online learning algorithm to work, one of the most critical com-

ponents is a robust food image analysis model. Towards that end, as an ad-

ditional contribution of this chapter, we present a novel and unified food im-

age analysis model, named FoodDist. Based on deep convolutional networks

and multi-task learning [91, 17], FoodDist is the best-of-its-kind Euclidean dis-

tance embedding for food images, in which similar food items have smaller

distances while dissimilar food items have larger distances. FoodDist allows

1Collecting, sharing and appreciating high quality, delicious-looking food images is a grow-
ing fashion in our everyday lives. For example, food photos are immensely popular on Insta-
gram (#food has over 177M posts and #foodporn has over 91M posts at the time of writing).

64

the recommender to learn users’ fine-grained food preferences accurately via

similarity assessments on food images. Besides preference learning, FoodDist

can be applied to other food-image-related tasks, such as food image detection,

classification, retrieval, and clustering. We benchmark FoodDist with Food-101

dataset [17], the largest dataset for food images. The results suggest the supe-

rior performance of FoodDist over prior approaches [173, 107, 17]. FoodDist is

available at https://github.com/ylongqi/fooddist.

We evaluate our online learning framework in a field study with 227 anony-

mous users, and we show that it is able to predict the food items that a user

likes or dislikes with high accuracy. Furthermore, we evaluate the desirabil-

ity of Yum-me recommendations end-to-end through a 60-person user study,

where each user rates the recipe recommendations made by Yum-me relative

to those made using a traditional survey-based approach. The study results

show that, compared to the traditional survey based recommender, our sys-

tem significantly improves the acceptance rate of the recommended recipes by

42.63%. We see Yum-me as a complement to the existing food preference elic-

itation approaches. It further filters the food items selected by a traditional

onboarding survey based on users’ fine-grained tastes for food and allows a

system to serve tailored recommendations upon its first use. We discuss some

potential use cases in Section 4.7. The implementation of Yum-me is available

at https://github.com/ylongqi/yumme.

The rest of the chapter is organized as follows. After discussing related

work in Section 4.2, we introduce the structure of Yum-me and our backend

database in Section 4.3. In Section 4.4, we describe the algorithmic details of

the proposed online learning algorithm, followed by the architecture of Food-

65

https://github.com/ylongqi/fooddist
https://github.com/ylongqi/yumme

Dist model in Section 4.5. The evaluation results of each component, as well as

the recommender are presented in Section 4.6. Finally, we discuss the limita-

tions, potential impact and real world applications in Section 4.7 and conclude

in Section 4.8.

4.2 Related work

This chapter benefits from, and is relevant to, multiple research threads: (1)

healthy meal recommender system, (2) cold-start problem and preference elici-

tation, (3) pairwise algorithms for recommendation, and (4) food image analy-

sis, which will be surveyed in detail next.

4.2.1 Healthy meal recommender system

Traditional food and recipe recommender systems learn users’ dietary prefer-

ences from their online activities, including ratings [51, 53, 64, 45], clicks [145,

56], and browsing history [157, 160, 114]. For example, Svensson et al. [145]

built a social navigation system that recommends recipes based on users’ pre-

vious choices; Pinxteren et al. [160] proposed to learn a recipe similarity mea-

sure from crowd card-sorting and made recommendations based on the self-

reported data; Harvey et al. [64] and Elsweiler et al. [45] generated healthy meal

plans based on users’ ratings towards a set of recipes and the nutritional re-

quirements calculated for the persona. In addition, previous recommenders

also seek to incorporate users’ food consumption history recorded by food jour-

naling systems (e.g., taking food images [31] or writing down ingredients and

66

meta-information [160]).

The above systems, albeit are able to learn fine-grained food preferences,

share a common limitation: their recommendations are not effective for a user

until she generates enough data. Therefore, most commercial applications,

such as Zipongo [190] and Shopwell [135], adopt onboarding surveys to more

quickly elicit coarse-grained food preferences. For example, Zipongo’s ques-

tionnaires [190] ask users about their nutrient intake, lifestyle, habits, and food

preferences, and then make day-to-day and week-to-week healthy meal recom-

mendations. And ShopWell’s survey [135] is designed to avoid certain food

allergens, e.g., gluten, fish, corn, or poultry, and find meals that match certain

lifestyles, e.g., healthy pregnancy or athletic training.

Comparing to existing approaches, Yum-me enables a rapid elicitation of

users’ fine-grained food preferences for immediate healthy meal recommenda-

tions. Based on an online learning framework [173], Yum-me infers users’ pref-

erences for each single food item in a large food dataset, and leverage these

learned preferences to recommend recipes catering to individual user’s nutri-

tional aspirations.

4.2.2 Cold-start problem and preference elicitation

To alleviate the cold-start problem mentioned above, several models of pref-

erence elicitation have been proposed in recent years. The most prevalent

method of elicitation is to train decision trees to poll users in a structured

fashion [121, 57, 188, 35, 144]. These questions were selected either in ad-

vance and remain static [121] or dynamically based on real-time user feed-

67

back [57, 188, 35, 144]. Previous work also explored the possibility of eliciting

item ratings directly from users [184, 26]. This process can either be carried at

item- [184] or category- [26] level.

Existing preference elicitation methods mostly focus on the domain of movie

recommendations [144, 121, 26, 184] and visual commerce [35] (e.g., cars and

cameras), where items can be categorized based on readily available metadata.

When it comes to real dishes, however, categorical data (e.g., cuisines) and other

associated information (e.g., cooking time) possess a much weaker connection

to a user’s food preferences. Therefore, in this chapter, we leverage the visual

representation of each meal so as to better capture the process through which

people make diet decisions.

4.2.3 Pairwise algorithms for recommendation

Pairwise approaches [123, 117, 124, 71, 174, 163, 165] are widely studied in

recommender system literature. For example, Bayesian Personalized Ranking

(BPR) [124, 123] and Weighted Approximate-Rank Pairwise (WARP) loss [163]

are two representative and popular approaches under this category. Such al-

gorithms have successfully powered many state-of-the-art systems [71, 165]. In

terms of the cold-start scenario, Park et al. [117] developed a pairwise method

to leverage users’ demographic information in recommending new items.

Compared to previous methods, our problem setting is fundamentally dif-

ferent in the sense that Yum-me elicits preferences in an active manner where

the input is incremental and contingent on the previous decisions made by the

algorithm, whereas prior work focuses on the static circumstances where the

68

training data is available up-front, and there is no need for the system to ac-

tively interact with the user.

4.2.4 Food image analysis

The task of analyzing food images is very important for many dietary applica-

tions that actively or passively collect food images from mobile [31] and wear-

able [7, 152, 111] devices. The estimation of food intake and its nutritional in-

formation provides detailed records of people’s dietary history [113]. Previous

work mainly conducted the analysis by leveraging crowdsourcing [113, 156] or

computer vision algorithms [17, 107].

Noronha et al. [113] crowdsourced nutritional analysis of food images by

leveraging the wisdom of untrained crowds. The study demonstrated the pos-

sibility of estimating a meal’s calories, fat, carbohydrates, and protein by aggre-

gating opinions from a large number of people. Turner-McGrievy et al. [156]

instructed a crowd to rank the healthiness of several food items and validated

the results against the ground truth provided by trained observers. Although

this approach has been justified to be accurate, it inherently requires human

resources that restrict it from scaling up to a large number of users.

To overcome the limitations of crowdsourcing and automate the analysis

process, prior work built computer vision algorithms for food image classifi-

cation [17, 107, 83, 12], retrieval [85], and nutrient estimation [107, 143, 23, 69].

However, most of the previous work [17] leveraged hand-crafted image fea-

tures. And existing approaches were only evaluated in controlled environment,

such as in a specific restaurant [12] or for a particular type of cuisine [83]. These

69

Take	a	look	at	the	food	below	and	tap	all	
that	look	delicious	to	you.

http:// http://

Compare	the	food	pair	below	and	tap	on	
whichever	looks	delicious	to	you.

Press	on	Yuck if	neither	of	
them	fits	to	your	taste

2iters +	 13iters	

2iters +	 13iters

2iters +	 13iters	

Browser

Mobile

Wearable

Personal	Dietary	Profile	
(Food	Preferences)

… …

Nutrient-based	meal	recommendations	
based	on	dietary	restrictions	

Re-ranking

Personalized	nutrient-based	meal	
recommendations	

…...

…...

Phase	I Phase	II

Take	a	look	at	the	food	
below	and	tap	all	that	
look	delicious	to	you.

Compare	the	food	pair	below	
and	tap	on	whichever	looks	

delicious	to	you.

Press	on	Yuck if	neither	of	
them	fits	to	your	taste

Take	a	look	at	the	food	
below	and	tap	all	that	
look	delicious	 to	you.

Compare	 the	food	pair	below	
and	tap	on	whichever	looks	

delicious	 to	you.

Press	on	Yuck if	neither	 of	
them	fits	to	your	taste

http://

Choose	the	closest	diet	type	to	you.

⌾No	restrictions	⌾ Vegetarian	⌾ Vegan	

⌾ Kosher	⌾ Halal

Identify	your	health	goals.

⌾Reduce	⌾Maintain	⌾ Increase	

⌾Reduce	⌾Maintain	⌾ Increase	

⌾Reduce	⌾Maintain	⌾ Increase	

Calories

Protein

Fat

+
Survey

Choose	the	closest	diet	
type	to	you.

Identify	your	health	goals.

⌾Reduce	

⌾Maintain

Calories

⌾No	restrictions	

⌾ Vegetarian	

⌾ Vegan	

⌾ Kosher	

⌾ Halal +

+
Choose	the	closest	diet	

type	to	you.

⌾No	restrictions	

⌾ Vegetarian	

⌾ Vegan	

⌾ Kosher	

⌾ Halal

Figure 4.1: An overview of Yum-me. This figure shows three sample sce-
narios in which Yum-me can be used: desktop browser, mobile,
and smart watch. The fine-grained dietary profile is used to re-
rank and personalize recipe recommendations.

models’ performance might degrade when applied to food images in the wild.

In this chapter, we design FoodDist using deep convolutional neural net-

work based multitask learning [22], which has been shown to be successful

in improving the generalization power and performance in several applica-

tions [186, 33]. The main challenge of multitask learning is to design appro-

priate network structures and sharing mechanisms across tasks. With our pro-

posed network structure, we show that, compared to prior approaches, Food-

Dist achieves superior performance when applied to the largest available real-

world food image dataset [17].

4.3 Yum-me system design

Our personalized nutrient-based recipe recommendation system, Yum-me, op-

erates over a given inventory of food items and suggests the items that will ap-

peal to a user’s palate and meet her nutritional expectations and dietary restric-

70

tions. A high-level overview of Yum-me’s recommendation process is shown in

Fig. 4.1 and briefly described as follows:

• Step 1: A user answers a simple survey to specify her dietary restrictions

and nutritional expectations. This information is used by Yum-me to filter

food items and create an initial set of recommendation candidates.

• Step 2: The user then uses an adaptive visual interface to express her fine-

grained food preferences through simple comparisons of food items. The

learned preferences are used to further re-rank the recommendations pre-

sented to her.

In the rest of this section, we describe our backend large-scale food database

and aforementioned two recommendation steps: (1) a user survey that elicits

dietary restrictions and nutritional expectations, and (2) an adaptive visual in-

terface that elicits fine-grained food preferences.

4.3.1 Large scale food database

To account for the dietary restrictions in many cultures and religions, or people’s

personal choices, we prepare a separate food database for each of the following

dietary restrictions:

No restrictions, Vegetarian, Vegan, Kosher, Halal 2

2Our system is not restricted to these five dietary restrictions and we will extend the system
functionalities to other categories in the future.

71

Table 4.1: The size of databases for different diet types. Unit: number of
unique recipes.

Database Original size Final size

No restriction 9405 7938

Vegetarian 10000 6713

Vegan 9638 6013

Kosher 10000 4825

Halal 10000 5002

For each diet type, we scraped 10,000 main dish recipes along with their im-

ages and metadata (e.g., ingredients, nutrients, tastes, etc.) from the Yummly

API [182]. The total number of recipes is around 50,000. In order to customize

food recommendations for people with specific dietary restrictions, e.g., vege-

tarian and vegan, we filter recipes by setting the allowedDiet parameter in the

search API. For kosher or halal, we explicitly rule out certain ingredients by

setting excludedIngredient parameter. The excluded ingredients include:

• Kosher: pork, rabbit, horse meat, bear, shellfish, shark, eel, octopus, octo-

puses, moreton bay bugs, and frog.

• Halal: pork, blood sausage, blood, blood pudding, alcohol, grain alcohol,

pure grain alcohol, and ethyl alcohol.

One challenge in using such a public food image API is that many recipes re-

turned by the API contain non-food images and incomplete nutritional informa-

tion. Therefore, we further filter the items with the following criteria: the recipe

should have nutritional information of calories, protein and fat, and at least one

food image. In order to automate this process, we build a binary classifier based

72

(a)	No	restrictions (b)	Vegetarian

Figure 4.2: An overview of two sample databases: (a) for users without
dietary restrictions and (b) for vegetarian users.

on a deep convolutional neural network to filter out non-food images. As sug-

gested by [107], we treat the whole training set of Food-101 dataset [17] as one

generic food category and sampled the same number of images (75,750) from

the ImageNet dataset [37] as our non-food category. We took the pretrained VGG

CNN model [136] and replaced the final 1000 dimensional softmax with a sin-

gle logistic node. For the validation, we used the Food-101 testing dataset along

with the same number of images sampled from ImageNet (25,250). We trained

the binary classifier using the Caffe framework [79] and it reached 98.7% vali-

dation accuracy. We applied the criteria to all the datasets and the final statistics

are shown in Table. 4.1.

Fig. 4.2 shows the visualizations of the collected datasets. For each of the

recipe images, we embed it into an 1000-dimensional feature space using Food-

Dist (described later in Section 4.5) and then project all the images onto a 2-D

plane using t-Distributed Stochastic Neighbor Embedding(t-SNE) [159]. For vis-

ibility, we further divide the 2-D plane into several blocks; from each of which,

we sample a representative food image residing in that block to present in the

figure. Fig. 4.2 demonstrates the large diversity and coverage of the collected

73

datasets. Also, the embedding results clearly demonstrate the effectiveness

of FoodDist in grouping similar food items together while pushing dissimilar

items away. This is important to the performance of Yum-me (Section 4.6.3).

4.3.2 User survey

The user survey is designed to elicit a user’s high-level dietary restrictions and

nutritional expectations. A user can specify her dietary restrictions among the

five categories mentioned above and indicate her nutritional expectations in

terms of the desired amount of calories, protein and fat. We choose these nu-

trients for their high relevance to many common health goals, such as weight

control [46], sports performance [21], etc. We provide three options for each of

these nutrients: reduce, maintain, and increase. The user’s diet type is used to

select an appropriate food dataset, and the food items in the dataset are further

ranked by their suitability to the user’s nutritional goals.

To measure the suitability of food items given nutritional expectations, we

rank the recipes in terms of different nutrients in both ascending and descending

order, such that each recipe is associated with six ranking values, i.e., rcalories,a,

rcalories,d, rprotein,a, rprotein,d, rfat,a and rfat,d, where a and d stand for ascending and de-

scending respectively. The final suitability value for each recipe given the health

goal is calculated as follows:

u =
∑
n∈U

αn,arn,a +
∑
n∈U

αn,drn,d, (4.1)

where U = {calories, protein, fat}. The indicator coefficient αn,a = 1 ⇐⇒ nutri-

ent n is rated as reduce and αn,d = 1 ⇐⇒ nutrient n is rated as increase. Otherwise

αn,a = 0 and αn,d = 0. If a user’s goal is to maintain all nutrients, then all recipes

74

are given equal rankings. Eventually, given a user’s responses to the survey, we

rank the suitability of all the recipes in the corresponding database and select

top-M items (around top 10%) as the candidate pool of proper recipes for this

user. In our initial prototype, we set M = 500.

4.3.3 Adaptive visual interface

Based on the food suitability ranking, a candidate pool of proper recipes is cre-

ated. However, not all the recipes in this candidate pool may suit the user’s

palate. Therefore, we design an adaptive visual interface to further identify

recipes that cater to the user’s taste through eliciting their fine-grained food

preferences. We propose to learn fine-grained food preferences by presenting

food images to the user and asking her to choose the ones that look delicious.

Formally, the food preference learning task can be defined as follows. Given

a large target set of food items S, we represent a user’s preferences as a dis-

tribution over all the possible food items, i.e., p = [p1, ..., p|S|],
∑

i pi = 1, where

each element pi denotes the user’s favorable scale for item i. Since the number

of items, |S|, is usually quite large and intractable to elicit individually from the

user 3, the approach we take is to adaptively choose a specific and much smaller

subset V to present to the user, and propagate the user’s preferences for those

items to the rest items based on visual similarity. Specifically, as Fig. 4.1 shows,

the preference elicitation process can be divided into two phases:

Phase I: In each of the first 2 iterations, we present ten food images and ask

the user to tap on all the items that look delicious to them.
3The target set is often the whole food database that different applications use. For example,

the size of Yummly database can be up to 1-million [182].

75

User Backend

𝒑𝒕−𝟏 𝒑𝒕

ℬ𝑡−1 ℬ𝑡

2
1 𝒦𝑡−1, ℒ𝑡−1

3 𝒦𝑡

Figure 4.3: User-system interaction at iteration t.

Phase II: In each of the subsequent iterations, we present a pair of food im-

ages and ask the user to either compare the food pair and tap on the one that

looks delicious to her or tap on “Yuck” if neither of the items appeal to her taste.

In order to support the preference elicitation process, we design a novel

exploration-exploitation online learning algorithm (Section 4.4) built on a state-

of-the-art food image embedding model (Section 4.5).

4.4 Online learning framework

We model the interactions between the user and our backend system at iteration

t, (t ∈ R+, t = 1, 2, ...,T) as Fig. 4.3 shows. The symbols used in our algorithm are

defined as follows:

• Kt : The set of food items presented to the user at iteration t (K0 = ∅).

∀k ∈ Kt, k ∈ S;

• Lt−1 : The set of food items that the user prefers (selects) among {k|k ∈ Kt−1}.

Lt−1 ⊆ Kt−1;

• pt = [pt
1, ..., pt

|S|] : The user’s preference distribution over all food items at

iteration t, where ‖pt‖1 = 1. p0 is initialized as p0
i = 1

|S|
;

76

• Bt : The set of food images that have already been explored until iteration

t (B0 = ∅). Bi ⊆ B j(i < j);

• F = { f (x1), ..., f (x|S|)} : The set of feature vectors of food images xi(i = 1, ..., |

S |) extracted by a feature extractor, denoted by f . We use FoodDist (Sec-

tion 4.5) as the feature extractor.

Based on the workflow depicted in Fig. 4.3, for each iteration t, the backend

system updates vector pt−1 to pt and set Bt−1 to Bt based on users’ selections

Lt−1 and previous image set Kt−1. After that, it decides the set of images to be

presented to the user (i.e., Kt). Our food preference elicitation framework can

be formalized in Algorithm. 1. The core procedures are update and select, which

are described in the following subsections for more details.

Algorithm 1: Food Preference Elicitation Framework
Data: S, F = { f (x1), ..., f (x|S|)}
Result: pT

1 B0 = ∅, K0 = ∅, L0 = ∅, p0 = [1
|S|
, ..., 1

|S|
] ;

2 for t ← 1 to T do
3 [Bt, pt]← update(Kt−1, Lt−1, Bt−1, pt−1) ;
4 Kt ← select(t, Bt, pt) ;
5 if t equals T then
6 return pT

7 else
8 ShowToUser(Kt) ;
9 Lt ← WaitForSelection() ;

4.4.1 User state update

Based on the user’s selections Lt−1 and the image set Kt−1, the update module

renews the user’s state from {Bt−1, pt−1} to {Bt, pt}. Our intuition and assumption

77

behind following algorithm design is that people tend to have close preferences

for similar food items.

Updating the preference vector pt

Our strategy of updating the preference vector pt is inspired by the Exponenti-

ated Gradient Algorithm in bandit settings (EXP3) [9]. Specifically, at iteration

t, each pt
i in the vector pt is updated by:

pt
i ← pt−1

i × e
βut−1

i
pt−1

i , (4.2)

where β is the exponentiated coefficient that controls update speed and ut−1 =

{ut−1
1 , ..., ut−1

|S| } is the update vector used to adjust each preference value.

In order to calculate update vector u, we formalize the user’s selection pro-

cess as a data labeling problem [187] where for item i ∈ Lt−1, label yt−1
i = 1 and

for item j ∈ Kt−1\Lt−1, label yt−1
j = −1. Thus, the label vector yt−1 = {yt−1

1 , ..., yt−1
|S| }

provided by the user is:

yt−1
i =

1 : i ∈ Lt−1

0 : i < Kt−1

−1 : i ∈ Kt−1\Lt−1

(4.3)

For the update vector u, we expect that it is close to the label vector y but with

smooth propagation of label values to nearby neighbors (For convenience, we

omit superscript that denotes the current iteration). The update vector u can be

regarded as a soften label vector as compared to y. To make the solution more

computationally tractable, for each item i with yi , 0, we construct a locally

connected undirected graph Gi as Fig. 4.4 shows: ∀ j ∈ S, add an edge (i, j) if

78

a i

b

yi
a = 0 yi

i = 1/ − 1

yi
b = 0

|| f (xi) − f (xa)|| > δ

|| f (xi) − f (xb)|| ≤ δ

Figure 4.4: The locally connected graph with item i.

‖ f (xi) − f (x j)‖ ≤ δ. The labels yi for vertices s j in graph Gi are calculated as

yi
j = 0(j = 1, . . . , |S| \ i), yi

i = yi.

For each locally connected graph Gi, we fix ui
i value as ui

i = yi
i and propose the

following regularized optimization method to compute other elements (∀ui
j, j ,

i) of the update vector ui , which is inspired by the traditional label propagation

method [187].

Consider the problem of minimizing the following objective function Q(ui):

min
ui

Q(ui) =

|S|∑
j=1, j,i

wi j(yi
i − ui

j)
2 +

|S|∑
j=1, j,i

(1 − wi j)(ui
j − yi

j)
2, (4.4)

where wi j represents the similarity measure between food item si and s j, as

eqn. 4.5 shows.

wi j =

e−

1
2α2 ‖ f (xi)− f (x j)‖2 : ‖ f (xi) − f (x j)‖ ≤ δ

0 : ‖ f (xi) − f (x j)‖ > δ
(4.5)

where α2 = 1
|S|2

∑
i, j∈S‖ f (xi) − f (x j)‖2

The first term of the objective function Q(ui) is a smoothness constraint as the

update value for similar food items should not change too much. The second

term is a fitting constraint, which makes ui close to the initial labeling assigned by

the user (i.e., yi). However, unlike [187], in our algorithm, the trade-off between

79

these two constraints is dynamically adjusted by the similarity between item i

and j where similar pairs are weighed more with smoothness and dissimilar

pairs are forced to be close to the initial labeling.

We calculate the optimal ui
j by taking the partial derivative of Q(ui) with

respect to different ui
j:

∂Q(ui)
ui

j, j,i

= 2wi j(ui
j − ui

i) + 2(1 − wi j)(ui
j − yi

j) = 0 (4.6)

And as ui
i = yi

i,

ui
j = wi jui

i = wi jyi
i(j = 1, 2, ..., | S |) (4.7)

Eventually, the original update vector u is calculated as u =
∑

i ui.

Updating the explored food image set Bt

In order to balance the exploitation and exploration in the images selection phase,

we maintain a set Bt that keeps track of all similar food items that have already

been visited by user and the updating rule for Bt is as follows:

Bt ← Bt−1 ∪ {i ∈ S|min j∈Kt−1‖ f (xi) − f (x j)‖ ≤ δ} (4.8)

The pseudo code for the update module is shown in Algorithm.2.

80

Algorithm 2: User state update Algorithm
1 Function update(Kt−1,Lt−1,Bt−1, pt−1)

input : Kt−1,Lt−1,Bt−1, pt−1

output: Bt, pt

2 u = [0, ..., 0],Bt = Bt−1, pt = pt−1

3 for i← 1 to | S | do
4 // preference update
5 for s j in Kt−1 do
6 ui ← ui + (−1)1(j∈Lt−1)−1wi j

7 pt
i = pt−1

i e
βui

pt−1
i

8 // explored image set update
9 if min(‖ f (xi) − f (x j)‖, ∀ j ∈ Kt−1) ≤ δ then

10 Bt ← Bt ∪ {i}

11 // normalize pt s.t.‖pt‖1 = 1
12 normalize(pt)

4.4.2 Images selection

After updating the user state, the select module then picks food images to be pre-

sented in the next round. The selection process trade-offs between exploration

and exploitation.

Food Exploration

For each of the first two iterations, we select ten different food images through

K-means++ [8] algorithm, a seeding method used in K-means clustering. It guar-

antees that the selected items are evenly distributed in the feature space. For

our use case, K-means++ algorithm is summarized in Algorithm.3.

81

Algorithm 3: Kmeans++ Algorithm for Exploration
1 Function k-means-pp(S, n)

input : S, n
output: Kt

2 Kt=random(S)
3 while | Kt |< n do
4 prob← [0, ..., 0]|S|
5 for i← 1 to | S | do
6 probi ← min(‖ f (xi) − f (x j)‖2|∀ j ∈ Kt)

7 sample m ∈ Swith probability ∝ probm
8 Kt ← Kt ∪ {m}

Food Exploitation-Exploration

Starting from the third iteration, the user is asked to make pairwise comparisons

between food images. To balance exploitation and exploration, we select one

image from the area with higher preference value based on the current pt and the

other one from the unexplored area, i.e., S\Bt. (Both selections are random given

a subset of food items). The detailed images selection algorithm is summarized

in Algorithm 4.

Algorithm 4: Images Selection Algorithm - select
1 Function select(t,Bt, pt)

input : t,Bt, pt

output: Kt

2 Kt = ∅

3 if t ≤ 2 then
4 Kt ← k-means-pp(S, 10) // K-means++
5 else
6 // 99th percentile (top 1%)
7 threshold← percentile(pt, 99)
8 topSet← {si ∈ S|pt

i ≥ threshold}
9 Kt ← [random(topSet), random(S\Bt)]

82

0.9151

0.6471

0.9652

1.3484 1.3410

1.3484 1.1476

Figure 4.5: An Euclidean distance embedding of FoodDist. This figure
shows the pairwise euclidean distances between food image
representations. A distance of 0.0 means that two food items
are identical and a distance of 2.0 represents that the image con-
tents are completely different. In this example, if the threshold
is set to 1.0, then all the images can be correctly classified.

4.5 FoodDist: food image embedding

The goal of FoodDist is to learn a feature extractor (embedding) f that projects

images to an N dimensional embedding space where Euclidean distances be-

tween feature vectors reflect the similarities between food items, as Fig. 4.5

shows. Formally speaking, if image x1 is more similar to image x2 than image

x3, then ‖ f (x1) − f (x2)‖ < ‖ f (x1) − f (x3)‖.

We build FoodDist based on recent advances in deep Convolutional Neu-

ral Networks (CNN), which provides a powerful framework for automatic fea-

ture learning. Traditional feature representations for images are mostly hand-

crafted. For example, the SIFT (Scale Invariant Feature Transform) [101] fea-

83

ture descriptor is invariant to changes in object scale and illumination, thereby

improving the generalizability of the trained model. However, in the face of

highly diverse image characteristics, the one-size-fits-all feature extractor per-

forms poorly. In contrast, deep learning adapts to different image characteristics

and extracts features that are most discriminative for a task [122].

A feature extractor for food images can be learned through classification and

metric learning, or through multitask learning, which concurrently performs

these two tasks. We demonstrate that our proposed multitask learning approach

enjoys the benefits of both classification and metric learning, and achieves the

best performance.

4.5.1 Learning with classification

One common way to learn a feature extractor for labeled data is to train a neural

network to perform classification (i.e., mapping input to labels), and takes the

output of a hidden layer as the feature representations. Specifically, we use a

feedforward deep CNN with n-layers (as the upper half of the Fig. 4.6 shows):

F(x) = gn (gn−1 (. . . gi(. . . g1(x) . . .))) , (4.9)

where gi(.) represents the computation of the i-th layer (e.g., convolution, pool-

ing, fully-connected, etc.), and F(x) is the output class label. The difference

between the output class label and the ground truth (i.e., the error) is back-

propagated throughout the whole network from layer n to the layer 1. We can

take the output of the layer n − 1 as the feature representation of x, which is

equivalent to having a feature extractor f as:

84

f (x) = gn−1 (. . . gi(. . . g1(x) . . .)) (4.10)

Usually, the last few layers are fully-connected layers, and the last layer gn(.)

is roughly equivalent to a linear classifier that is built on the features f (x) [76].

Therefore, f (x) is discriminative in separating instances under different categor-

ical labels, and the Euclidean distances between normalized feature vectors can

reflect the similarities between images.

4.5.2 Metric learning

Different from the classification approach, where the feature extractor is a by-

product, metric learning proposes to learn the distance embedding directly from

the paired inputs of similar and dissimilar examples. Prior work [173] used

a Siamese network to learn a feature extractor for food images. The structure

of a Siamese network resembles that in Fig. 4.6 but without Class label, Fully

connected, 101 and Softmax Loss layers. The inputs to the Siamese network are

pairs of food images x1, x2. The images pass through CNNs with shared weights

and the output of each network is regarded as the feature representation, i.e.,

f (x1) and f (x2), respectively. Our goal is for f (x1) and f (x2) to have a small

distance value (close to 0) if x1 and x2 are similar food items; otherwise, they

should have a larger distance value. The value of the contrastive loss is then

back-propagated to optimize the Siamese network:

L(x1, x2, l) =
1
2

lD2 +
1
2

(1 − l) max (0,m − D)2 , (4.11)

where similarity label l ∈ {0, 1} indicates whether the input pair of food items x1,

x2 are similar or not (l = 1 for similar, l = 0 for dissimilar), m > 0 is the margin

85

3x
3:
1	
co
nv
ol
ut
io
n,
	6
4

3x
3:
1	
co
nv
ol
ut
io
n,
	6
4

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	1
28

3x
3:
1	
co
nv
ol
ut
io
n,
	1
28

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	2
56

3x
3:
1	
co
nv
ol
ut
io
n,
	2
56

3x
3:
1	
co
nv
ol
ut
io
n,
	2
56

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

2x
2:
2	
m
ax
	p
oo

lin
g	

Fu
lly
	co

nn
ec
te
d,
	4
09

6

Fu
lly
	co

nn
ec
te
d,
	4
09

6

Fu
lly
	co

nn
ec
te
d,
	1
00

0

3x
3:
1	
co
nv
ol
ut
io
n,
	6
4

3x
3:
1	
co
nv
ol
ut
io
n,
	6
4

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	1
28

3x
3:
1	
co
nv
ol
ut
io
n,
	1
28

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	2
56

3x
3:
1	
co
nv
ol
ut
io
n,
	2
56

3x
3:
1	
co
nv
ol
ut
io
n,
	2
56

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

2x
2:
2	
m
ax
	p
oo

lin
g	

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

3x
3:
1	
co
nv
ol
ut
io
n,
	5
12

2x
2:
2	
m
ax
	p
oo

lin
g	

Fu
lly
	co

nn
ec
te
d,
	4
09

6

Fu
lly
	co

nn
ec
te
d,
	4
09

6

Fu
lly
	co

nn
ec
te
d,
	1
00

0

!"

#"
!$

#$
!%

#%
!&

#&
!'

#'
!(

#(
!)

#)
!*

#*
!+

#+
!",

#",
!""

#""
!"$

#"$
!"%

#"%
!"&

#"&
!"'

#"'
!"(

#"(

Fu
lly
	co

nn
ec
te
d,
	1
01

So
ftm

ax
Lo
ss

L2
	N
or
m

L2
	N
or
m

Si
am

es
e	
Lo
ss

!")

#")

Im
ag
e	
1

Im
ag
e	
2

Class	label	(Image	1)

Similarity	label

-" = ",… , ","

-$ = ,, "

Figure 4.6: The multitask learning structure of FoodDist. Different types
of layers are denoted by different colors. The format of each
type of layer: Convolution layer: [receptive field size:step size
..., #channels]; Pooling layer: [pooling size:step size ...]; Fully
connected layer: [..., output dimension].

for dissimilar items and D is the Euclidean distance between f (x1) and f (x2) in

embedding space. Minimizing the contrastive loss pulls similar pairs together

and pushes dissimilar pairs farther away (larger than a margin m).

The major advantage of metric learning is that the network is directly op-

timized for our final goal, i.e., a robust distance measure between images.

However, as shown in the model benchmarks, using the pairwise information

alone does not improve the embedding performance as the process of sampling

pairs loses the label information, which is arguably more discriminative than

(dis)similar pairs.

86

4.5.3 Multitask learning

Either of the learning methods above has its pros and cons. Learning with clas-

sification leverages the label information, but the network is not directly opti-

mized towards our goal. As a result, although the feature vectors are learned to

be separable in the linear space, the intra- and inter- categorical distances might

still be unbalanced. On the other hand, metric learning is explicitly optimized

for our final objective by pushing the distances between dissimilar food items

apart beyond a margin m. Nevertheless, sampling the similar or dissimilar pairs

loses valuable label information. For example, given a pair of items with differ-

ent labels, we only consider the dissimilarity between the two categories they

belong to, but overlook the fact that each item is also different from the remain-

ing n − 2 categories, where n is the total number of categories.

In order to leverage the advantages of both methods, we propose a multitask

learning design [76] for FoodDist. The idea of multitask learning is to share

part of the model across tasks so as to improve the generalization ability of the

learned model [76]. In our case, as Fig. 4.6 shows, we share the parameters

between the classification network and Siamese network, and optimize them

simultaneously. We use the base structure of the Siamese network and share

the upper CNN with a classification network where the output of the CNN is

fed into a cascade of a fully connected layer and a softmax loss layer. The final

loss of the whole network is the weighted sum of the softmax loss Lsoftmax and

contrastive loss Lcontrastive:

L = ωLsoftmax + (1 − ω)Lcontrastive (4.12)

87

Our benchmark results (Section 4.6.2) suggest that the feature extractor built

with multitask learning: it achieves the best performance for both classification

and Euclidean distance-based retrieval tasks.

4.6 Evaluation

We conduct user testing for the online learning framework and end-to-end rec-

ommender system (Yum-me), as well as offline evaluation for food image em-

bedding model (FoodDist). Our hypothesis are summarized below:

• H1: Our online learning framework learns more accurate food preferences

than baseline approaches.

• H2: FoodDist generates better similarity measure for food images than

state-of-the-art embedding models.

• H3: Yum-me makes more accurate nutritionally appropriate recipe rec-

ommendations than traditional survey as it integrates coarse-grained item

filtering with adaptively learned fine-grained food preferences.

In this section, we present (1) a user testing for the online learning frame-

work (Section 4.6.1), (2) a benchmarking for FoodDist model using a large-scale

real-world food image dataset (Section 4.6.2), and (3) an end-to-end lab user

testing (Section 4.6.3).

88

4.6.1 User testing for the online learning framework

In order to evaluate the accuracy of our online learning framework, we con-

ducted a field study with 227 anonymous users recruited from social networks

and university mailing lists. The experiment was approved by the Institutional

Review Board (ID: 1411005129) at Cornell University. All participants were re-

quired to use this system independently for three times. Each time the study

consists of following two phases:

• Training Phase. A participant conducted the first T iterations of food im-

age comparisons, and the system learnt and elicited preference vector pT

based on the algorithms proposed in this chapter or baseline methods. We

randomly picked T from the set {5, 10, 15} at the beginning but made sure

that each user experienced different values of T only once.

• Testing Phase. After T iterations of training, the participant entered the

testing phase, which consists of 10 rounds of pairwise comparisons. We

picked testing images based on the preference vector pT that learnt from

online interactions: one of them was selected from the area that the user

liked (i.e., the items with top 1% preference value) and the other one from

the area that the user disliked (i.e., the items with bottom 1% preference

value). Both images were picked at random from the unexplored items.

Prediction accuracy

In order to evaluate the effectiveness of the user state update and the images se-

lection methods respectively. The experiment was 2 × 2 designed. For the user

state update method, we compare the proposed Label propagation, Exponentiated

89

Gradient (LE) algorithm to the Online Perceptron (OP), and for the images selection

method, we compare the proposed Exploration-Exploitation (EE) algorithm to the

Random Selection (RS). Specifically, four frameworks were evaluated:

LE+EE: The online learning algorithm proposed in this chapter. It combines

the ideas of Label propagation, Exponentiated Gradient algorithm for user state

update and Exploitation-Exploration strategy for images selection.

LE+RS: The baseline algorithm that retains our method for user state update

(LE) but Random Select images to present to the user without any exploitation

or exploration.

OP+EE: As each item is represented by 1000 dim feature vector, we can use

regression to tackle this online learning problem (i.e., learning a weight vector

w such that w f (xi) is higher for item i that the user prefers). Hence, we compare

our method with an Online Perceptron algorithm that updates w whenever it

makes error, i.e., if yiw f (xi) ≤ 0, assign w ← w + yiw f (xi), where yi is the label

for item i (pairwise comparison is regarded as binary classification such that

the food item that the user selects is labeled as +1, and otherwise -1). In this

algorithm, we retain our strategy of images selection (i.e., EE).

OP+RS: The baseline algorithm based on OP+EE but with Random images

Selection strategy.

The participants were assigned to different algorithms completely at ran-

dom. Among 227 participants in our study, 58 used algorithm LE+EE, and 57

used OP+RS. For the rest of users (112), half of them (56) tested OP+EE and the

other half (56) tested LE+RS.

90

*
*

**
**

**

Figure 4.7: The prediction accuracy of different algorithms in various
training settings (asterisks represent different levels of statis-
tical significance: ∗∗∗ : p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05).

0.0 0.2 0.4 0.6 0.8 1.0
PredLctLon AccurDcy

0.0

0.2

0.4

0.6

0.8

1.0

C
u

P
u

lD
tL

v
e
 D

Ls
tr

LE
u

tL
o
n LE+EE:5

LE+EE:10

LE+EE:15

Figure 4.8: The cumulative distribution of the prediction accuracy of
LE+EE algorithm (Numbers in the legend represent the values
of T).

We calculate the prediction accuracy of each individual user and aggregate

them based on the context that they encountered (i.e., the number of training

iterations T and the algorithm settings). The prediction accuracies and their

cumulative distributions are shown in Fig. 4.7, 4.8 and 4.9 respectively. These

results demonstrate that our algorithm significantly outperforms baseline meth-

91

0.0 0.2 0.4 0.6 0.8 1.0
PredLctLRn AccurDcy

0.0

0.2

0.4

0.6

0.8

1.0

C
u

P
u

OD
tL

v
e
 D

Ls
tr

LE
u

tL
R
n 2P+56:5

2P+EE:5

LE+56:5

LE+EE:5

(a) # training iterations: 5

0.0 0.2 0.4 0.6 0.8 1.0
PredLctLRn AccurDcy

0.0

0.2

0.4

0.6

0.8

1.0

C
u

P
u

OD
tL

v
e
 D

Ls
tr

LE
u

tL
R
n 2P+R6:10

2P+EE:10

LE+R6:10

LE+EE:10

(b) # training iterations: 10

0.0 0.2 0.4 0.6 0.8 1.0
PredLctLRn AccurDcy

0.0

0.2

0.4

0.6

0.8

1.0

C
u

P
u

OD
tL

v
e
 D

Ls
tr

LE
u

tL
R
n 2P+56:15

2P+EE:15

LE+56:15

LE+EE:15

(c) # training iterations: 15

Figure 4.9: Comparison of the cumulative distribution of prediction accu-
racy across different algorithms.

ods. And it is more accurate with larger number of training iterations. In com-

parison, the prediction accuracy of the baseline methods decreases as users pro-

vide more information (larger T).

The main reasons why the baseline methods manifest suboptimal perfor-

mance are: (1) Within a limited number of interactions, random selection can

not maintain the knowledge that it has already learned from the user (exploita-

tion), nor effectively explore the unknown areas (exploration). In addition, it’s

more likely for the baseline method to choose food items that are too similar for

the user to effectively compare. (2) Online Perceptron (OP) tends to be underfit-

ted. In our application, each food item is represented by 1000 dim feature vector,

and OP tries to learn a linear hyperplane based on a small number of training

data points. And linearity can be an overly simplified assumption for features

from a deep neural network.

92

(a) User Response Time

(b) System Execution Time

Figure 4.10: User response time and system execution time.

Table 4.2: Average duration to complete the training phase.

Iter: 5 # Iter: 10 # Iter: 15

28.75s 39.74s 53.22s

System efficiency

Computing efficiency and user experiences are also important metrics in eval-

uating online learning systems. Therefore, we recorded the program execution

time and user response time. As shown in Fig. 4.10(b), the program execution

time is about 0.35s for the first two iterations, and less than 0.025s for the itera-

tions afterwards4. Also, according to Fig. 4.10(a), the majority of users can make

their decisions in less than 15s when comparing ten food images, whereas the

payload for the pairwise comparison is less than 2 − 3s. In terms of the end-

to-end system overhead (Table. 4.2), users can typically complete 15 training

iterations within 53 seconds, which justify that our online learning framework

is light-weight and user-friendly in efficiently eliciting food preferences.

4Our web system implementation is based on Amazon EC2 t2-micro Linux 64-bit instance

93

Qualitative feedback

After the study, some participants sent us emails regarding their experiences of

using the adaptive visual interface. Most of the comments reflect the partici-

pants’ satisfactions and that our system is able to engage the users throughout

the elicitation process. For example, “Now I’m really hungry and want a grilled

cheese sandwich!”, “That was fun seeing tasty food at top of the morning.” and “Pretty

cool tool.”. However, they also highlight some limitations of our current proto-

type. For example, “I am addicted to spicy food and it totally missed it. There may

just not be enough spicy alternatives in the different dishes to pick up on it.” points

out that the prototype is limited in the coverage of the food database.

4.6.2 Offline benchmarking for FoodDist

We developed FoodDist and baseline models (Section 4.5) using Food-101 train-

ing dataset, which contains 75,750 food images from 101 food categories (750

instances for each category) [17]. To the best of our knowledge, Food-101 is the

largest and most challenging publicly available dataset for food images. We im-

plemented models using Caffe [79] and experimented with two CNN architec-

tures in our framework: AlexNet [91], which won the first place at ILSVRC2012

challenge, and VGG [136], which is the state-of-the-art CNN model. The inputs

to the networks are image crops of size 224 × 224 (VGG) or 227 × 227 (AlexNet).

They are randomly sampled from a pixelwise mean-subtracted image or its

horizontal flip. In our benchmarking, we trained four different feature extrac-

tors: AlexNet+Learning with classification (AlexNet+CL), AlextNet+Multitask

learning (AlexNet+MT), VGG+Learning with classification (VGG+CL) and

94

VGG+Multitask learning (VGG+ML, FoodDist). For the multitask learning

framework, we sampled similar and dissimilar image pairs with 1:10 ratio from

the Food-101 dataset based on the categorical labels [173]. The models were

fine-tuned based on the networks pre-trained using the ImageNet dataset [37].

We used Stochastic Gradient Decent with a mini-batch size of 64, and each net-

work was trained for 105 iterations. The initial learning rate is set to 0.001 and

we used a weight decay of 0.0005 and momentum of 0.9.

We compared the performance of four feature extractors, including Food-

Dist, with the state-of-the-art food image analysis models using Food-101 test-

ing dataset, which contains 25,250 food images from 101 food categories (250

instances for each category). We measured the performance using a classifica-

tion and a retrieval task discussed below:

• Classification: We tested the performance of the classification network in

each of the models above. We adopted the standard 10-crop testing, i.e.,

the network made a prediction by extracting ten patches from an image

(the four corner patches and the center patch in the original images and

their horizontal reflections), and averaging the predictions at the softmax

layer. We used Top-1 and Top-5 accuracy as metrics.

• Retrieval: We used a retrieval task to evaluate the quality of the learned

distance embeddings. Ideally, the distances should be smaller for similar

image pairs and larger for dissimilar pairs. Therefore, as suggested by pre-

vious work [173, 176], We retrieved the nearest k-neighbors of each testing

image, for k = 1, 2, ...,N, where N = 25250 is the size of the testing dataset,

and calculated the Precision and Recall values for each k. We used mean

Average Precision (mAP) as the evaluation metric to compare the perfor-

95

Table 4.3: The classification task performance. ∗ represents the state-of-
the-art approaches, and the boldface text indicates the method
with the best performance.

Method Top-1 ACC (%) Top-5 ACC(%)

RFDC∗ [17] 50.76% −−

GoogleLeNet∗ [107] 79% −−

AlexNet+CL 67.63% 89.02%

AlexNet+MT 70.50% 90.36%

VGG+CL 82.48% 95.70%

VGG+MT (FoodDist) 83.09% 95.82%

mance. For each method, the Precision/Recall values are averaged over

all the images in the testing set.

The evaluation results are summarized in Table. 4.3 and 4.4. FoodDist per-

forms the best among four models and is significantly better than the state-

of-the-art approaches in both tasks. For the classification task, the classifier

built on FoodDist features achieves 83.09% Top-1 accuracy, which significantly

outperforms the original RFDC [17] model and the proprietary GoogLeNet

model [107]; For the retrieval task, FoodDist doubles the mAP value reported

by previous work [173] that only used the AlexNet-based siamese network ar-

chitecture. These results demonstrate the superior performance of FoodDist in

generalization and measuring the similarities between food images with great

fidelity. As shown in both tables, the advantages of FoodDist generalize across

not only tasks, but also different CNN architectures.

The benchmark results demonstrate that FoodDist features possess high gen-

96

Table 4.4: The retrieval task performance. ∗ represents the state-of-the-art
approaches, and the boldface text indicates the method with the
best performance. (Note: The mAP value that we report for
Food-CNN is higher because we use pixel-wise mean subtrac-
tion, whereas the original paper only used per-channel mean
subtraction.)

Method mean Average Precision (mAP)

Food-CNN∗ [173] 0.3084

AlexNet+CL 0.3751

AlexNet+MT 0.4063

VGG+CL 0.6417

VGG+MT (FoodDist) 0.6670

eralization ability and the euclidean distances between feature vectors reflect

the similarities between food images with great fidelity. In addition, as we can

observe from both tables, the multitask learning based approach always per-

forms better than learning with classification for both tasks no matter which

CNN is used. This further justifies the proposed multitask learning approach

and its advantages in incorporating both label and pairwise distance informa-

tion. This makes the learned features more generalizable and meaningful in the

euclidean distance space.

4.6.3 End-to-end user testing

We conducted an end-to-end user testing to validate the effectiveness of the

recommendation generated by Yum-me. We recruited 60 participants via the

university mailing lists, Facebook, and Twitter. The goal of the user testing is to

97

Figure 4.11: The survey used for user onboarding at PlateJoy. (The top
four questions are included.)

compare Yum-me to a widely-used user onboarding approach, i.e., a traditional

food preference survey (A sample survey used by PlateJoy is shown in Fig. 4.11).

As Yum-me is designed for scenarios where no rating or food consumption his-

tory is available (which is common when a user is new to a platform or is visiting

a nutritionist’s office), collaborative filtering algorithm that has been adopted by

many state-of-the-art recommenders is not directly comparable to our system.

In this study, we used a within-subject design in which each participant ex-

98

Step	1.	Users	identify	their	
diet	types	and	health	goals.

Step	2.	Users	use	visual	
interface	to	express	their	
fine-grained	food	
preferences.

Step	3.	Users	identify	each	of	
recommended	meals	as	either	
Yummy or	No	way.	(The	order	
of	the	items	is	randomized)

Top	500 healthy	items	that	
meet	users’	diet	types	and	
health	goals.	

Select	top	10 items	
ranked	by	user’s	
fine-grained	dietary	
preference.	

Randomly	select	10
food	 items	from	500	
healthy	meal	pool.

…... …...

…...…...

Figure 4.12: The workflow of the end-to-end user testing. We compare
Yum-me (blue arrows) to the baseline method (violet arrow)
that makes recommendations solely based on nutritional ex-
pectations and dietary restrictions.

pressed their opinions regarding the recipes recommended by both of the rec-

ommenders. The performance was compared on a per-user basis.

Study Design

We created a baseline recommendation system that randomly samples N out of

M recipes in the candidate pool to recommend to users (N = 10,M = 500 for

both Yum-me and the traditional baseline). This user study consists of three

phases (Fig. 4.12). Each participant was asked to (1) indicate her diet type and

nutritional expectations through our basic user survey; (2) use the visual inter-

face; and (3) give feedback to 20 recipe recommendations arranged in a random

order. The participants can express their opinion by dragging each recipe into

either the Yummy or the No way bucket. To overcome the fact that people tend

to balance the buckets if their previous choices were shown, the food item dis-

appeared after it is dragged into a bucket.

99

Table 4.5: The statistics of nutritional expectations indicated by 60 partici-
pants. Unit: number of participants.

Nutrient Reduce Maintain Increase

Calories 30 28 2

Protein 1 44 15

Fat 23 36 1

The system used for this study was implemented as a web service. And

participants were instructed to access the study website from their desktop or

mobile browsers. We leveraged the web for its wide accessibility, but we could

easily fit Yum-me into other ubiquitous devices, as mentioned earlier.

Participants

The most common dietary restriction chosen by 60 participants was No restric-

tions (48), followed by Vegetarian (9), Halal (2) and Kosher (1). No participant

chose Vegan. Participants’ nutritional expectations are summarized in Table. 4.5.

For Calories and Fat, the top two goals were Reduce and Maintain. For Protein,

participants tended to choose either Increase or Maintain. For health goals, the

top four choices were Maintain calories-Maintain protein-Maintain fat (20), Reduce

calories-Maintain protein-Reduce fat (10), Reduce calories-Maintain protein-Maintain

fat (10) and Reduce calories-Increase protein-Reduce fat (5). The statistics match

well with the common health goals among the general population, i.e., people

who plan to control weight and improve sports performance tend to reduce the

intake calories and fat, and increase the amount of protein.

100

0 0.2 0.4 0.6 0.8 1.0
Acceptance Rate

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Baseline
Yum-me

Figure 4.13: The cumulative distribution of the acceptance rate for both
recommender systems.

Quantitative analysis

We use a quantitative approach to demonstrate that: (1) Yum-me recommenda-

tions yield higher acceptance rates than the baseline approach; and (2) recipes

recommended by Yum-me satisfy users’ nutritional needs.

We calculated each participant’s acceptance rate of recipe recommendations

as follows:

acceptance rate =
of recipes in the Yummy bucket

of recommended recipes
.

The cumulative distribution of the acceptance rate is shown in Fig. 4.13.

And the average acceptance rate, Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE) of each approach are presented in Table. 4.6. We also

calculated the difference between the acceptance rates of the two systems (i.e.,

difference = Yum-me acceptance rate − baseline acceptance rate) and showed its dis-

tribution in Fig. 4.14. Yum-me outperforms the baseline by 42.63% in terms of

the acceptance rate. However, we also observe that there are 12 users (20%) with

zero acceptance rate difference (Fig. 4.6), which may due to the following two

101

-0.5 -0.3 -0.1 0.1 0.3 0.5
Difference of acceptance rate

0
2
4
6
8

10
12
14

Nu
m

be
r o

f P
ar

tic
ip

an
ts

Difference

Figure 4.14: The distribution of the acceptance rate difference between two
recommender systems. The difference is normally distributed
(A Shapiro Wilk W test is not significant (p = 0.12)), and a
paired Student’s t-test indicates a significant difference be-
tween the two methods (p < 0.0001).

Table 4.6: The Average Acceptance Rates (Avg. Acc.), Mean Absolute Er-
ror (MAE) and Root Mean Square Error (RMSE) of two recom-
mendation systems. Paired t-test p-value (Avg. Acc.): < 10−9.

Metric Mean SEM

Yum-me Avg. Acc. 0.7250 0.0299

Baseline Avg. Acc. 0.5083 0.0341

Yum-me MAE 0.2750 0.0299

Baseline MAE 0.4916 0.0341

Yum-me RMSE 0.4481 0.0355

Baseline RMSE 0.6649 0.0290

reasons: (1) Yum-me is not effective to this set of users, and (2) these participants

were not well involved in the study and randomly dragged items.

In terms of nutrition-wise performance, we compare the nutritional facts of

a participant’s favorite recipes with those recommended and accepted recipes.

Specifically, for users with the same nutritional needs and no dietary restric-

102

Goal: reduce calories (25 users) Goal: maintain calories (21 users)

Goal: maintain protein (36 users) Goal: increase protein (12 users) Goal: reduce fat (17 users)

Goal: increase calories (2 users)

Goal: maintain fat (30 users)

Av
er

ag
e

am
ou

nt
 o

f n
ut

rie
nt

s
pe

r s
er

vi
ng

 (n
or

m
al

ize
d)

Av

er
ag

e
am

ou
nt

 o
f n

ut
rie

nt
s

pe
r s

er
vi

ng
 (n

or
m

al
ize

d)

Av
er

ag
e

am
ou

nt
 o

f n
ut

rie
nt

s
pe

r s
er

vi
ng

 (n
or

m
al

ize
d)

users’ 20 favorite recipes

recipes recommended by Yum-
me and accepted by users.

recipes recommended by the
baseline and accepted by users.

Figure 4.15: Comparison of nutritional facts among participants’ favorite
recipes, accepted Yum-me recommendations, and accepted
baseline recommendations. The recipe is accepted if it was
dragged into the yummy bucket. The mean values are nor-
malized by the average amount of corresponding nutrient in
the favorite recipes (orange bar). (Only 7 out of 9 nutritional
goals were chosen by at least one participant.)

tions, we calculated the average amount of protein, calories and fat (per-

serving) in (1) their favorite 20 recipes (as determined by our online learning

algorithm), and (2) recommended and accepted recipes. The mean values pre-

sented in Fig. 4.15 are normalized by the average amount of the corresponding

nutrient in their favorite recipes. The results demonstrate that Yum-me is able

to satisfy most of the nutritional needs set by the participants, including reduce,

maintain and increase calories, increase protein, and reduce fat. However, our system

103

542401 81

113205 61

259 272 75

EX.	1

EX.	2

EX.	3

Figure 4.16: A qualitative analysis of Yum-me recommendations. Images
on the left half are sampled from users’ top-20 favorite recipes;
Images on the right half are the ones recommended to the
users. The number under each food image corresponds to the
amount of calories, unit: kcal/serving.

fails to meet two nutritional expectations, i.e., maintain protein and maintain fat.

Our results also show that Yum-me recommendations can result in certain unin-

tended consequences. For example, the goal of reducing fat results in a reduction

in protein and calories, and the goal of increasing calories ends up increasing pro-

tein. This is partially due to the inherent dependence between nutrients. And

we leave further investigation of this issue as future work.

Qualitative analysis

To qualitatively understand the recommendation mechanism of Yum-me, we

randomly pick 3 participants with no dietary restrictions and aimed at reducing

104

1 3 5 7 9 11 13 15
Number of iterations

8.92
8.93
8.94
8.95
8.96
8.97
8.98
8.99

En
tro

py

Figure 4.17: The entropy of the preference distributions in different itera-
tions of online learning. (Using data from 48 participants with
no dietary restrictions.)

calories. For each participant, we select top-20 general food items that the user

liked most (inferred by the online learning algorithm). And we further select

two recipes that are most similar to the ones that Yum-me recommended to

the user. As shown in Fig. 4.16, our system is able to recommend recipes that

are visually similar to the ones that the user liked, but with lower calories due

to the use of healthier ingredients or different cooking styles. These examples

showcase how Yum-me can leverage users’ general food preferences to rank the

nutritionally appropriate items, and find the ones that are most appealing.

Error analysis

We also measured the entropy of the learned preference distribution p 5 and

find that it is negatively correlated with the improvement of Yum-me over the

baseline (r = −0.32, p = 0.026). This correlation suggests that when a user’s pref-

erence distribution is more concentrated, the recommendations tend to be more

accurate. This may due to the fact that the entropy of the preference distribution

5Entropy of preference distribution: H(p) = −
∑

i pi log pi

105

roughly reflects the degree of confidence that the system has in the user’s pref-

erences. And the confidence is higher if the entropy is lower and vice versa. In

Fig. 4.17, we show the evolution of the entropy value as users are making more

comparisons, which demonstrates that the system becomes more confident with

more user feedback.

4.7 Discussions

In this section, we discuss the limitations of this research and present real world

scenarios where Yum-me and its sub-modules can be used.

4.7.1 Limitations of the evaluations

When evaluating the online learning framework, we construct the baselines by

combining methods that intuitively fit user state update and images selection mod-

ules. This introduces potential biases in baseline selections. Additionally, in

the end-to-end user testing, the participants’ judgements of whether the food is

Yummy or No way is potentially influenced by the image quality and the health

concerns. These may be confounding factors in measuring users’ preferences

towards food items and can be potentially eliminated by explicitly instructing

the participants to not consider these factors. We leave further evaluations as

future work.

106

4.7.2 Limitations of Yum-me in recommending healthy meals

The ultimate effectiveness of Yum-me in recommending healthy meals is con-

tingent on the appropriateness of the nutritional needs input by a user. In order

to conduct such recommendations for people with different conditions, Yum-me

could be used in the context of personal health coaches, nutritionists or coaching

applications that provide reliable nutritional suggestions based on a user’s age,

weight, height, exercise and disease history. For instance, general nutritional

recommendations can be calculated using online services built on the guidelines

from National Institutes of Health, such as weight-success6 and active7. Also, the

current prototype of Yum-me assumes a relatively simple strategy to rank the

nutritional appropriateness, and is limited in terms of the available options to

express nutritional needs. Both issues should be addressed by future work.

4.7.3 Yum-me for real world dietary applications

We envision that Yum-me has the potential to power many real-world dietary

applications. Some examples are: (1) User onboarding. Traditionally, dietary

application (e.g., Zipongo and Plated) address the cold start problem by asking

each new user to answer a set of pre-defined questions (Section 4.6.3) and then

recommend meals accordingly. Yum-me can enhance this process by eliciting

user’s fine-grained food preference. Service providers can customize Yum-me

to serve their own businesses and products by using a specialized backend food

item database, and then use it as a step following the general questionnaire. (2)

Nutritional assistants. While visiting a doctor’s office, patients are often asked

6http://www.weighing-success.com/NutritionalNeeds.html
7http://www.active.com/fitness/calculators/nutrition

107

http://www.weighing-success.com/NutritionalNeeds.html
http://www.active.com/fitness/calculators/nutrition

to fill out standard questionnaires to indicate food preferences and restrictions.

Patients’ answers are then investigated by the professionals to come up with

effective and personalized dietary suggestions. In such a scenario, the recom-

mendations made by Yum-me could provide a complementary channel for com-

municating the patients’ fine-grained food preferences to the doctor for further

tailored suggestions.

4.7.4 FoodDist for food image analysis tasks

FoodDist provides a unified model to extract discriminative features from food

images. The model is efficient to execute (< 0.5s/f on 8-core commodity pro-

cessors) and can be ported to mobile devices with the publicly-available caffe-

android-lib framework8.

FoodDist model can be used to fuel other nutritional applications: (1)

Food/meal recognition. Given a set of labels, e.g., food categories, cuisines, and

restaurants, the task of food recognition could be approached by first extracting

features from FoodDist and then training a linear classifier, e.g., logistic regres-

sion or SVM, to classify images against categories beyond the ones given in the

Food-101 dataset. (2) Nutritional Facts estimation. With a large-scale food im-

age database, the problem of estimating nutritional facts might be converted

to a simple nearest-neighbor retrieval task: given a query image, an algorithm

retrieves its closest neighbor using features extracted from FoodDist, and then

return that neighbor’s nutritional information [107].

8https://github.com/sh1r0/caffe-android-lib

108

https://github.com/sh1r0/caffe-android-lib

4.8 Conclusions

This chapter presented Yum-me, a novel nutrient-based recipe recommender

that recommends recipes catering to users’ fine-grained food preferences and

nutritional needs. We also presented an online learning algorithm to efficiently

learn food preferences, and FoodDist, a best-of-its-kind unified food image

analysis model. The user study and benchmarking results demonstrated the ef-

fectiveness of Yum-me and the superior performance of FoodDist model. Look-

ing forward, we envision that the idea of using visual similarity for preference

elicitation may have implications for the following research areas: (1) User-

centric modeling: the fine-grained food preferences learned by Yum-me is a

general dietary profile that can be used to power many other dietary applica-

tions, such as suggesting meal plans for diabetes patients. Moreover, a personal

dietary API can be built on top of this profile to enable cross-platform shar-

ing. (2) Food image analysis API for deeper content understanding: many

dietary applications, in particular the ones that capture a large number of food

images, might benefit from a deeper understanding of their image contents. For

instance, food journaling applications can benefit from the automatic analysis

of food images to summarize the day-to-day food intake or trigger contextual

reminders and suggestions. (3) Fine-grained preference elicitation leveraging

visual interfaces. The idea of eliciting users’ fine-grained preferences via visual

interfaces is applicable to other domains. Visual content captures many subtle

variations missing in text and categorical data. And an adaptive visual interface

can learn users’ preferences in a much shorter period of time and potentially

provide more pleasant user experiences than traditional approaches.

109

CHAPTER 5

INTERACTIVE PREFERENCE LEARNING: AN INTENTION-INFORMED

SPOKEN WORD CONTENT RECOMMENDATION SYSTEM

5.1 Introduction

The previous chapter showed how recommenders can be designed to promote

dietary choices aligned with people’s nutritional expectations. However, such

a possibility also raises an important concern that recommendations may shift

users’ content consumption relative to what they would otherwise have chosen

or aspire to choose. This is because users’ choices are often sub-optimal and

focus on the short-term [109], and these immediate choices then get reinforced

by recommendation systems that expose users to biased sets of items. The bias

of item presentations mainly comes from two sources: (1) recommenders often

hold a partial and skewed view of users’ preferences that are learned from ob-

servational interaction records [172, 131], and (2) recommenders are typically

subject to popularity bias [172], which hinders the system from presenting rel-

evant items. When subject to regular exposure to these biased item sets, users’

original intention-related choices may be altered — on the one hand, users may

explore more content, on the other hand, they may end up consuming trendy

but mediocre or irrelevant content with low utility to them.

Prior recommendation systems literature was focused on how many [72, 133]

and what [153, 50] items people choose but rarely addressed why people choose

them. For example, are the choices a result of people’s original intentions or

their interactions with recommendation systems? In other words, how recom-

mendations may change users’ consumption from what they might have cho-

110

sen, or aspire to choose? These under-explored questions are critical for rec-

ommender systems to listen to users and support users’ needs, intentions, and

desires [87, 43].

This chapter investigates the above mentioned questions, specifically, how

intention informed recommendations modulate users’ choices, as compared to intention

agnostic systems? To answer this question, we designed a randomized controlled

field study [88] in the domain of podcasts, where we leveraged the topics of in-

terest as an indicator of user intentions. The field study is a 2 × 2 experiment

where two factors are two stages of app usage, and two interventions within

each factor are different recommendation algorithms. First, during onboarding,

users expressed their topics of interest and subscribed to a set of podcast chan-

nels through a website, where we compared a popularity-based recommender

to a recommender that takes into account users’ intentions (intention-aware

recommender) in presenting channel candidates. Then, during the remainder

of their participation (app usage in the field), users used a customized commer-

cial mobile app without constraint. During this stage of the study, we compared

a subscription-based recommender to a Collaborative Filtering (CF)-based rec-

ommender in populating the home feed that users interacted with everyday.

Finally, participants were invited to complete a post-study survey where they

gave ratings in terms of four aspects of satisfaction.

We choose podcasts as the study domain for two main reasons. First, tra-

ditional podcast content consumption is typically based on subscriptions and

therefore clearly relates to user intentions — users subscribe to RSS feeds of the

channels they plan to listen to and then regularly consume released episodes

from those channels. Second, recommendation systems for podcasts is of grow-

111

ing importance but currently under-explored (Section 5.2.4).

We conducted the study with 105 urban college students, which consists of

52.5 hours of one-by-one onboarding, four weeks of field experiments with daily

communications and weekly reminders, and a follow-up survey with each par-

ticipant. Our key findings include:

• Effects of onboarding recommendations: Compared to commonly used

popularity-based ranking of channels, intention-aware recommendations

for user onboarding significantly raised the ratio of channel subscription

and episode listening that were aligned with users’ topic-wise aspirations

(improvements: 72.1% and 36.5% in terms of subscriptions at onboarding

and in the field, and 24.9% in terms of listening time).

• Effects of field recommendations: Home feeds that were populated by

the CF-based recommendations significantly increased the ratio of episode

listening to not-subscribed channels by 127.5%, as compared to the tradi-

tional home feeds that were filled purely with episodes from subscribed

channels.

• Interaction effects: User satisfaction was jointly affected by the recom-

mendation algorithms used in the two stages — the CF-based recom-

mender improved satisfaction for users onboarded with the intention-

aware recommender, whereas for others, the CF-based recommender was

shown to have negative effects.

These findings suggest that recommendations can implicitly but signifi-

cantly modulate users’ intention-related choices — they can encourage or dis-

courage users to pursue their aspirations and intentions. The positive modula-

112

tion effects can be leveraged to support healthy behavior and benefit an indi-

vidual’s aspired long-term growth, as discussed in Section 5.6. Also, our study

suggests a hybrid form of recommender for podcasts and subscription-based

media, consisting of an intention-aware recommender for onboarding and a CF-

based recommender for home feed generation. Together, these recommenders

support user aspirations, encourage content exploration, and provide satisfying

user experiences.

Through our study, we also find that signals regarding the utility of user

engagement is not reflected in intention-agnostic statistics (e.g., total listening

time and total number of subscriptions) that are commonly employed to under-

stand user experiences (Section 5.4.1). This highlights the importance of using

metrics conditioned on individual intentions to complement the understanding

of recommendation effects (Section 5.6.5).

5.2 Related work

This chapter builds on and contributes to four lines of research: (1) studying the

effects of recommendations, (2) investigating user intentions in using intelligent

systems, (3) building recommendation systems beyond optimizing for accuracy,

and (4) analyzing and leveraging spoken word content on the web.

5.2.1 Effects of recommendations

Recommendation systems were shown to increase traffic and user engage-

ment [133], but it was recently recognized in the research community that

113

they can also significantly affect end users’ behavior and the structure of a

society. Prior work in studying the effects of recommendations mainly fo-

cused on the social network structures [142, 34, 141] and the filtering bubble

problem [116, 10, 50, 70, 112, 18]. For example, the former line of research

demonstrated that introducing friend-based recommendations into social net-

work platforms exacerbates popularity bias (i.e., rich gets richer) [142] and es-

tablishes an algorithmic ceiling for minority groups of users [141]. The latter

line of research illustrated how recommendations affect users’ information ex-

posure by either limiting users’ information exposure to a biased scope [116, 50]

or enabling users to explore ideologically diverse opinions [10, 50]. As a result,

consumers and users may be fragmented [70]. Most recently, Chaney et al. [25]

used a simulation to show that recommendations may lead to a homogeniza-

tion of users’ choices. For contextual-aware recommendations, prior work has

raised the concern about their potential alternation of users’ content consump-

tion context [4].

Although prior research has revealed significant effects of recommendations

in the global and individual levels, these effects are user intention-agnostic and

are measured and interpreted from system designers’ and experts’ perspectives.

It is unknown whether recommendations’ effects are aligned with or deviated

from users’ own intentions. Our study measures effects from users’ angle and

contributes findings that are critical to the future user-centric recommendation

systems [72, 87, 43].

114

5.2.2 User intentions

Understanding and leveraging user intentions is an important theme in design-

ing intelligent systems. For example, in the context of web search, previous

research [127, 95, 150, 166, 38] discovered diverse user intents in using search

engines [150], e.g., for the same query, users may look for different information.

The understanding and prediction of users’ intents is an essential component

for personalized search experience [150, 166, 38]. In other domains, such as

arts and fashion [28], and psychology [44, 126], user intentions were also in-

vestigated and were shown to be predictable from behavior logs [28]. In the

context of recommendation systems, prior work leveraged interactive systems

to elicit signals about user intentions, such as conversation-based [82], survey-

based [177], and critique-based [27] systems. Recently, Tomkins et al. [153] pre-

sented a system that recommends appropriate products for users who intend to

maintain a sustainable behavior.

However, when incorporating users’ intentions, the intelligent systems were

often evaluated against intention-agnostic metrics, such as click-through rate,

dwelling time, etc., which do not answer the questions of how these systems

alter users’ choices from what they might have chosen, and how much of users’

intentions were satisfied. As argued by Knijnenburg et al. [87] and Ekstrand

et al. [43], future recommenders should be able to satisfy what users want and

what they want to achieve. Our research takes a step further and investigates how

intention informed recommenders would in turn affect users’ intention-related

choices, which closes the feedback loop between choices and recommenders.

115

5.2.3 Recommendations beyond accuracy

This chapter contributes to the increasing recognition and interests in building

recommender systems for objectives beyond accuracy [87, 43, 171], such as di-

versity [72, 178], fairness [42], novelty [151], sustainability [153], and unbiased-

ness [172, 131]. These objectives were motivated by the observation that recom-

mender systems purely optimized for accuracy may have various negative ef-

fects on end users, as reviewed in Section 5.2.1. These enable recommendations

to serve users with different needs and intents. Nevertheless, similar to the

limitations discussed in Section 5.2.2, prior work optimized these systems us-

ing hand-crafted or expert-designed metrics (such as categorical accuracy [42]),

which may or may not be aligned with users’ intentions and goals. Our study

reveals the extent to which users’ choices are related to their intentions, which

can be used to inform future design of recommenders beyond accuracy.

5.2.4 Web spoken word content

We conducted the field study in the domain of spoken word content (pod-

casts) — an emerged channel for information and entertainment [125]. In the

web community, prior research was mainly focused on building web search en-

gines [54, 15, 59, 115, 110], which index podcast metadata and audio files so as to

match given text queries to audio. However, there has been very little work ad-

dressing the podcast recommendation problem. The only work we recognized

was from Tsagkias et al. [155] that predicted users’ podcast preference using

hand-crafted preference indicators, which can hardly be applied in the wild be-

cause of the heterogeneity of users and content. With the interests from major

116

media companies to serve podcasts, research is needed to build recommenders

that better expose users to content beyond passive receiving. Our study con-

tributes a hybrid form of podcast recommender that serves users’ intentions,

encourages exploration and results in higher user satisfaction. This chapter also

presents key guidelines for the design of podcast recommenders, which can be

applied to other subscription-based media platforms as well.

5.3 Study design

Our study design included collecting consumption intentions from all partici-

pants and randomly assigning participants to four independent experimental

conditions. This design allowed us to conduct within-subject comparisons to

understand the discrepancy between users’ content consumption and inten-

tions, and between-subject comparisons to measure the effects of different rec-

ommendations. Specifically, our study consisted of two phases: an one-by-one

video onboarding (30 minutes) and a field study (four weeks), corresponding

to the prominent settings under which podcast listeners are exposed to recom-

mendations in the wild (i.e., when they first begin to use an application, and

during the daily usage). Our design for both phases of the study allowed par-

ticipants to interact with recommendations naturally. During onboarding, par-

ticipants were instructed to subscribe to a set of podcast channels they wanted

to listen to from a ranked list of candidates; and in the field, participants were

provided with a customized commercial podcast mobile app (available on both

Android and IOS) to listen to podcasts naturally and without study constraints.

The experiment used a full 2×2 factorial design where the two factors were rec-

ommendations made in the two study stages, i.e., onboarding (ONB) and field

117

Arts & Literature

Business

Comedy

Education

Food

Fashion & Beauty

Games & Hobbies

Government & Organizations

Health

Kids & Family

Music

News & Politics

Religion & Spirituality

Science & Medicine

Society & Culture

Sports & Recreation

TV & Film

Technology

Literature, Design, Performing Arts, Visual Arts

Careers, Investing, Management & Marketing, Business News, Shopping

K-12, Higher Education, Educational Technology, Language Courses, Training

Video Games, Automotive, Aviation, Hobbies, Other Games

National, Regional, Local, Non-Profit

Fitness & Nutrition, Self-Help, Sexuality, Alternative Health

Buddhism, Christianity, Islam, Judaism, Spirituality, Hinduism, Other

Natural Sciences, Medicine, Social Sciences

Personal Journals, Places & Travel, Philosophy, History

Outdoor, Professional, College & High School, Amateur

Gadgets, Tech News, Podcasting, Software How-to

Please select 1 to 8 topics similar to what you want to listen to in podcasts

Fitness & Nutrition

Self-Help

Sexuality

Alternative Health

Health

Careers

Investing

Management & Marketing

Business News

Shopping

Business

K-12

Higher Education

Educational Technology

Language Courses

Training

Education

Choose subtopics you aspire to listen to (optional)
If you would like fine-grained recommendations, please choose subtopics from each list

Natural Sciences

Medicine

Social Sciences

Science & Medicine

(a) General topics selection

(b) Fine-grained topics selection

Figure 5.1: The web user interface designed for participants to indicate
their topic-wise intentions. Participants first select up to eight
general topics they want to listen to and then optionally select
fine-grained topics. The topics are defined using podcast cate-
gories in iTunes.

(FIE) recommendations, and the two interventions within each factor were spe-

cific algorithms that presented channels or episodes in different orders. Below,

we describe detailed design of each phase.

5.3.1 Onboarding (ONB)

We onboarded participants one-by-one using remote video conferencing soft-

ware. Participants were instructed to complete two tasks during onboarding:

(1) indicate their topic-wise intentions and interests, and (2) subscribe to chan-

nels that they want to listen to in the field. Participants were directed to use a

website we developed to complete both tasks.

118

Imagine you are using a new podcast app – please choose 1 to 10 channels you want to subscribe to

(a) Control group: Popularity-based recommendation (POP) (b) Experimental group: Aspiration-inspired recommendation (ASP)

Figure 5.2: The web user interface designed for participants to subscribe to
channels during onboarding. The interface presented a list of
podcast shows, and participants were instructed to subscribe to
up to ten of them. For the control group (POP), channels were
ordered by their popularity on iTunes, whereas for the experi-
mental group (ASP), the ordering was determined by channels’
alignment to participants’ topic-wise intentions. Both groups
shared the same set of candidate content.

Indicating topic-wise intentions. We collected participants’ listening aspi-

rations in the form of podcast topics (Fig. 5.1). This topic selection approach

is a common practice adopted by major content platforms (e.g., Pinterest and

Medium) to elicit user preferences during onboarding. We used podcast cate-

gories defined by iTunes1 as topics, which consists of two levels: general and

fine-grained. Through the website, participants first picked 1-8 general topics

(Fig. 5.1-a), and then optionally chose fine-grained topics within the selected

general ones (Fig. 5.1-b). To help participants make sense of general topics, fine-

grained topics were shown side-by-side.

Subscribing to channels. Each participant was then asked to subscribe to

1Podcast directory: https://itunes.apple.com/us/genre/podcasts/id26?mt=2

119

https://itunes.apple.com/us/genre/podcasts/id26?mt=2

up to ten podcast channels from a list of recommendations (Fig. 5.2). The rec-

ommendation list was subject to the control or experimental setting, according

to the participants’ assignments in the study. The control intervention imple-

mented a standard user onboarding strategy that ordered channels based on

their popularity on iTunes (POP) (Fig. 5.2-a), whereas the experimental inter-

vention ranked channels by the degree to which they related to participants’

aspirations2 (ASP) (Fig. 5.2-b). The relevance of a channel c for a user u is char-

acterized by a score s(c|u) calculated as follows.

s(c|u) = |Sc ∩Au| + 1 [mc ∈ Au] , (5.1)

whereSc is the set of topics (general and fine-grained) that the channel c belongs

to, mc is the channel’s primary topic (mc ∈ Sc), and Au is the set of topics that

users aspired to listen to. Both Sc and mc were scraped via iTunes RSS API. As

shown in the above equation, when calculating s(c|u), we placed an additional

weight on the primary topic.

For both groups, participants were instructed to browse the website freely

and make decisions at any point of time. To prepare channels for recommenda-

tions, we scraped all top channels returned by the iTunes RSS feed, and made a

join with our podcast database. Eventually, 2231 channels were used.

5.3.2 Field study (FIE)

After onboarding, each participant was provided with a podcast mobile app

and a pre-registered account to use for four weeks in the field. The app was pre-

loaded with the channels for which the participant subscribed during onboard-

2To break ties, channel popularity on iTunes was used.

120

not-subscribed
channel

(b) Control group:
episodes from subscribed

channels (SUB)

(c) Experimental group:
episodes from mixed

channels (MIX)

(a) Library showing
subscribed channels

Figure 5.3: The library and home pages of the customized podcast mobile
app. The library page showed the channels to which a user has
subscribed, and the home page chronologically presented a list
of episodes. For the control group (SUB), the episodes were re-
trieved from subscribed channels, whereas for the experimen-
tal group (MIX), those episodes were mixed with the ones se-
lected from not-subscribed channels based on a CF model.

(a) Randomly sampled
popular channels

(b) Categorical listing of
channels

(c) Popular/Trending
channels

randomly sampled
(unpersonalized)

Figure 5.4: The discover page of the customized podcast mobile app. The
page grouped channels into topic-wise categories and pre-
sented a trending chart that ordered channels according to their
popularity on iTunes. This page allowed users to readily ex-
plore and subscribe to new channels.

121

ing. We customized a popular commercial app for our study. The app (shown

in Fig. 5.3 and Fig. 5.4) has three main pages: (1) a home page (Fig. 5.3-b,c) that

presented a personalized list of new podcast episodes, and is the default page

when opening the app; (2) a library page (Fig. 5.3-a) that showed the channels

to which a user has subscribed; and (3) a discover page (Fig. 5.4) that listed

channels based on categories and popularity, which were not personalized. In

addition, the app allowed users to directly search for content (through the icon

at the top-right corner), and users can also consume episodes from a channel’s

page (by clicking on the channel’s thumbnail).

Similar to onboarding, the field intervention was applied to recommenda-

tions on the mobile home page, which chronologically listed episodes from

a personalized set of channels and was refreshed daily for newly-released

episodes. For the control group, the personalized set contained channels to

which a user has subscribed (SUB); whereas for the experimental intervention,

the set additionally mixed five not-subscribed channels (MIX). These channels

were retrieved by a matrix factorization based recommendation model, which

we built as follows:

• Dataset collection. We scraped the most recent 500 reviews of 29K pop-

ular podcast channels on iTunes to train a recommendation model. In

order to conduct recommendations based on users’ channel subscriptions,

which are binary signals, we disregarded rating scores and treated iTunes

reviews as positive-only feedback. The final training dataset contained

702K user-channel interactions from 137K iTunes users.

• Recommendation model. We used OpenRec [171] to build a Weighted

Regularized Matrix Factorization (WRMF) [73] based recommender,

122

which is a representative implicit-feedback-based recommendation model

and is optimized to minimize the following objective function:

min
x∗,y∗

∑
u∈U,i∈I

wui(pui − xT
u yi)2 + λ‖Θ‖2, (5.2)

where Θ is a set of model parameters, xu and yi are latent factor representa-

tions for user u (among all iTunes usersU) and channel i (among all iTunes

channels I) respectively, and pui is a binary indicator for user preferences

(pui = 1 if user u subscribed to channel i, and pui = 0 otherwise). In ad-

dition, WRMF uses wui to control models’ confidence levels on pui. We set

wui such that wui = 1 if pui = 1, and wui = 0.01 otherwise. These parameter

settings achieved the best validation results in our dataset. When apply-

ing the WRMF model, we discarded xu since it corresponds to users from

iTunes, and fixed trained channel representations yi. For a participant u′,

we derived an analytic expression of the optimal user representation xu′

by differentiating the objective function (eqn. 5.2):

xu′ =
1

λ +
∑

i wu′iyT
i yi

∑
i

wu′i pu′iyi (5.3)

• Not-subscribed channel retrieval. For any participant u′ in the experi-

mental group, we retrieved the top 5 not-subscribed channels that had the

highest dot product scores (i.e., xu′yi, i ∈ {i|pu′i = 0 ∧ i ∈ I}). Although the

recommendation model was fixed throughout the study, retrieved chan-

nels were adaptively updated as participants subscribed to new shows.

5.3.3 Post-study survey

After participants finished the 4-weeks field study, we conducted a post-study

survey through email to elicit user satisfaction. The survey questions follow

123

Total number of participants: 105, unreported: 26
Gender: Female: 50 Male: 29

Age (years): Max: 43 Min: 17 Mean: 21
Device: IOS: 49 Android: 30

Major:
Computing and Information Science: 20

Arts & Sciences: 22 Life Sciences: 10
Medicine: 2 Business: 16 Engineering: 9

Table 5.1: Participants’ demographic information including gender, age,
primary mobile device, and college major.

a template: “How satisfied were you with ?”, and the aspects we surveyed

include the app, the experiment, your current podcast channel subscriptions, and the

home feed in the app. For each question, participants were instructed to give a

likert-scale rating (i.e., not at all satisfied, slightly satisfied, neutral, very satisfied,

and extremely satisfied).

5.3.4 Participant recruitment

We recruited 105 full-time undergraduate students who were studying in New

York City and were from diverse background. The demographic information

of the participants is summarized in Table. 5.1. Participants were compensated

with $30 after completing both phases of the study. To encourage app usage in

the field, we provided an additional $20 bonus for those who used the mobile

app for at least five days a week, and reminded all participants to listen to new

episodes weekly. Finally, participants were randomly assigned to one of the

2 × 2 conditions (POP-SUB: 25, POP-MIX: 26, ASP-SUB:29, ASP-MIX:25), and

two research personnel who were blind to condition assignments managed and

executed participants onboarding and the field study. The study was approved

by the Institutional Review Board (IRB) under the protocol #1507005739.

124

1 5 10
of subscriptions

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(a) Onboarding subscriptions.

0 25 50
of subscriptions

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs

ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(b) Field subscriptions.

100 101 102 103 104 105

of seconds

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(c) Listening time.

Figure 5.5: The cumulative distributions of users over the number of sub-
scriptions and listening time. These figures show the extent to
which participants were actively subscribing and listening to
podcasts throughout the study. A vertical line in these figures
represents a group of users with a similar activity level. We
note that these commonly-used aggregated measures are not
statistically different across the four groups. In other words,
they do not reflect the different composition of content con-
sumption across these groups. These differences are critical
to understand the effects of recommendations on individual
growth and experience.

5.4 Study results

Our study recorded the choices that participants made at onboarding and in

the field including both channel subscriptions and episode listening. In addi-

tion, we recorded satisfaction ratings that participants gave to questions in the

final survey. Eventually, 99 out of 105 participants completed the study (POP-

SUB: 24, POP-MIX: 23, ASP-SUB:28, ASP-MIX:24). We summarize and present

our study results in four dimensions: general usage patterns (Section 5.4.1),

choices related to topic-wise intentions (Section 5.5.1), exploratory choices (Sec-

tion 5.5.2), and user satisfaction (Section 5.5.3).

125

5.4.1 General usage patterns

To understand the usability and user experience with our podcast content plat-

form, we investigate a type of commonly used metrics, user activity level [92].

We count the number of subscriptions that each user made in the field, and the

amount of time that each user spent listening to episodes. The distributions

of these measures over users are illustrated in Fig. 5.5. Overall, participants

were fairly active in using the mobile app in the field with 8.8 average num-

ber of subscriptions and 4.58-hour average listening time. Participants’ activity

level is also distributed within a range and has rare outliers (Fig. 5.5-b,c). In

Fig. 5.5-a, we also plot the distribution of the number of onboarding subscrip-

tions, which is shown to spread from one to ten (maximum allowance) with an

average of 7.4. To test whether two experimental factors affect the three mea-

sures in Fig. 5.5, we conduct a general nonparametric factorial analysis using

the Aligned Rank Transform (ART) [167] (by treating the three measures as re-

sponses). We use ART because our study contains more than one factor, and

all the measures are not normally distributed over users3. In the rest of this

chapter, if not specified, the ART is used to conduct statistical significance tests

(notations: ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05). The ART reports no signifi-

cant effect from ONB, FIE, or ONB×FIE for all the three measures. However, as

shown in Section 5.5.1 and 5.5.2, ONB and FIE have significant effects on users’

podcast consumption patterns, although they are not captured in the general

user activity measures. We discuss the limitations of these traditional measures

in Section 5.6.5.

In addition to aggregate users’ activities (subscriptions and listening time)

3The normality test is conducted via the Shapiro-Wilk normality test

126

0 11 23
Hour of day

0

100

200

of

 li
st

en
 in

st
an

ce
s

(a) Hour of day distribution.

M T S
Day of week

0

250

500

of

 li
st

en
 in

st
an

ce
s

(b) Day of week distribution.

Figure 5.6: The distribution of podcast listening instances over hour of day
and day of week. The aggregation is across all participants.
Again we note that no statistical difference is observed across
the four groups.

on a per-user basis, we also cluster the activities into hour of day (Fig. 5.6-a),

day of week (Fig. 5.6-b), and distinct channels (Fig. 5.7). Temporal distribu-

tions of listening instances (Fig. 5.6) reveal several diurnal and weekly listening

patterns, such as decreased listening during night and over weekends. How-

ever, no statistical evidence shows significant effects of experimental factors

on these temporal patterns. Regarding the channel-wise user activity distribu-

tions (Fig. 5.7), they demonstrate that (1) during onboarding (Fig. 5.7-a), partici-

pants’ channel subscriptions manifested significant popularity bias under the

POP treatment, i.e., the majority of user subscriptions were concentrated on

a small number of channels, whereas under the ASP treatment, subscriptions

were spread out to more channels and tended to be uniformly distributed; and

(2) in the field, users interacted with a broader set of podcast channels than dur-

ing onboarding, but both experimental factors have no significant effect on the

number of interactions that each channel received.

127

1 40 80 120 160
Sorted channels by popularity

0.0

0.5

1.0

cu
m

. %
 o

f s
ub

s.

ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(a) Onboarding subscriptions.

1 70 140 210
Sorted channels by popularity

0.0

0.5

1.0

cu
m

. %
 o

f s
ub

s.

ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(b) Field subscriptions.

20 40 60 80 100 120
Sorted channels by popularity

0.0

0.5

1.0

cu
m

. %
 o

f s
ec

.

ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(c) Listening time.

Figure 5.7: The cumulative distributions of subscriptions and listening
time over channels ordered by popularity. The popularity is
defined as the number of subscription (a, b) and the amount
of listening (c). These figures show the extent to which partici-
pants’ content consumption was concentrated on a small set of
popular items. A linear line in the figure represents uniformly
distributed consumption over all channels. During onboard-
ing, the POP intervention resulted in significant popularity bias
in participants’ subscriptions, but in the field, no significant ef-
fect from experimental factors is observed.

5.5 Qualitative usage results

We show the channels that were most-subscribed and listened during onboard-

ing and in the field (Fig. 5.8). During onboarding, the subscriptions made in

ASP-∗ groups were much more diverse compared to the POP-∗ groups. The

subscriptions from POP-∗ groups were mostly concentrated on trendy chan-

nels such as TED Talks Daily, TED Radio Hour, and Hidden Brain. However,

in the field, all groups manifested diverse content consumption patterns, and

the top subscribed and listened channels contained both trendy and long-tail

items. These qualitative results further illustrate how users’ podcast content

consumption was driven by users’ intentions and at the same time affected by

recommendation systems.

128

ASP
-

SUB

ASP
-

MIX

POP
-

SUB

POP
-

MIX

Top onboarding subscriptions Top field subscriptions Top field listening

Figure 5.8: The top five most interacted content source during onboarding
and in the field, categorized by 2 × 2 groups. Each square icon
represents a podcast channel. These qualitative results demon-
strate how users’ content consumption in the field was jointly
affected by users’ intentions and recommendation systems.

Sorted topics0

20

40

60

of

 p
ar

tic
ip

an
ts

Figure 5.9: The distribution of user intentions over podcast topics (cate-
gories). Topics are sorted by their popularity descendingly.
Participants’ intended topics were diversely spread, with most
of the topics liked by less than half of the participants.

5.5.1 Choices related to topic-wise intentions

The distribution of the topics that participants intended to consume is shown

in Fig. 5.9, which shows the diversity of the topics of interest chosen by partic-

ipants — the intended topics in the population were spread across 53 distinct

general and fine-grained categories, and most of the topics were selected by less

than half of the population. Such a wide range of selected topics is partially at-

tributable to the diverse background of our recruited participants (Table. 5.1). To

show how users’ choices related to topic-wise intentions may be modulated by

129

0.0 0.5 1.0
% of related subscriptions (Psubtopic(u))

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(a) Onboarding subscriptions
(ONB: ∗∗).

0.0 0.5 1.0
% of related subscriptions (Psubtopic(u))

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(b) Field subscriptions (ONB:
∗∗∗).

0.0 0.5 1.0
% of related listening (P listentopic (u))

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(c) Listening time (ONB: ∗).

Figure 5.10: The cumulative distributions of users over the percentage of
the topicwise intention-related subscriptions and listening. In
the above figures, an x = 1.0 curve denotes that all users’
consumption is related to their topicwise intentions, while an
x = 0.0 curve denotes that none is related. The ASP inter-
vention during onboarding is shown to significantly increase
the topic-related onboarding subscriptions, topic-related field
subscriptions, and topic-related field listening. The FIE factor
and the interaction ONB×FIE have no significant effect.

two stages of recommendations, we define a topic-wise intention ratio rtopic(c|u)

of a channel c for user u as follows:

rtopic(c|u) =
|Sc ∩Au|

|Sc|
, (5.4)

where we use the notations from eqn. 5.1. The value of rtopic(c|u) corresponds to

the proportion of a channel’s content that aligns with a user’s intended topics.

Then using rtopic(c|u), we calculate the average alignment of a user u’s subscrip-

tions, Psub
topic(u), as the average rtopic(c|u) over all followed channels Fu, i.e.,

Psub
topic(u) =

∑
c∈Fu

rtopic(c|u)
|Fu|

(5.5)

and calculate the average alignment of a user u’s listening, Plisten
topic (u), as the

weighted average of rtopic(c|u) over listened channels Lu with the weight pro-

portional to the listening duration dc, i.e.,

Plisten
topic (u) =

∑
c∈Lu

rtopic(c|u)dc∑
c∈Lu

dc
(5.6)

We show the cumulative distributions of users over Psub
topic(u) and Plisten

topic (u)

in Fig. 5.10, and the 2 × 2 groupwise averages in Fig. 5.11. These graphs and

130

SUB MIX
Field intervention

0.40

0.65

0.90

Av
g.

 %
 o

f r
el

at
ed

 su
bs

.
ASP
POP

(a) Onboard. subs. (ONB:∗∗).

SUB MIX
Field intervention

0.40

0.65

0.90

Av
g.

 %
 o

f r
el

at
ed

 su
bs

.

ASP
POP

(b) Field subs. (ONB:∗∗∗).

SUB MIX
Field intervention

0.40

0.65

0.90

Av
g.

 %
 o

f r
el

at
ed

 li
st

en
.

ASP
POP

(c) Listening time (ONB:∗).

Figure 5.11: The groupwise average percentage of the topicwise intention-
related subscriptions and listening. The ASP intervention sig-
nificantly improves the topic-relatedness of onboarding sub-
scriptions, field subscriptions, and field episode listening by
72.1%, 36.5%, and 24.9% respectively. The FIE and the inter-
action (ONB×FIE) have no significant effect.

corresponding ART tests demonstrate that under all scenarios, the ASP inter-

vention significantly improves the ratio of content consumption that matches

users’ topic-wise intentions — during onboarding, ASP increases P
sub
topic by 72.1%

(ONB:∗∗), and in the field, ASP improves P
sub
topic and P

listen
topic by 36.5% (ONB:∗∗∗)

and 24.9% (ONB:∗) respectively. It is worth noting that although improvements

are larger at onboarding when the intervention is directly applied, ASP is shown

to have significant indirect effects on users’ content consumption in the field as

well. The statistical test does not show significant effects from the FIE factor and

the interaction (i.e., ONB×FIE).

5.5.2 Exploratory choices

To investigate how participants’ exploratory choices were affected by rec-

ommendations, we divided their podcast listening into subscribed listening

(exploitation) and not-subscribed listening (exploration). We define the ex-

131

0.0 0.5 1.0
% of exploratory listening (P listenexplore(u))

0.0

0.5

1.0

cu
m

. %
 o

f u
se

rs

ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(a) The cumulative distribution over users (FIE: ∗).

SUB MIX
Field intervention

0.00

0.15

0.30

Av
g.

 %
 o

f e
xp

lo
ra

to
ry

 li
st

en
.

ASP
POP

(b) The groupwise average
(FIE: ∗).

Figure 5.12: The percentage of subscriptions and listening from not-
subscribed channels: (a) cumulative distributions over users,
and (b) groupwise average. In (a), a x = 1.0 curve denotes
that users do not listen to episodes from subscribed channels,
while a x = 0.0 curve denotes that all listening comes from
subscribed channels. The MIX intervention is shown to sig-
nificantly increase the exploration rate by 127.5%. The ONB
and the interaction (ONB×FIE) have no significant effect.

ploratory ratio rexplore(c|u) as a counterpart for rtopic(c|u) (Section 5.5.1). This ex-

ploratory ratio is calculated as follows.

rexplore(c|u) = 1 − 1
[
c ∈ F t

u
]
, (5.7)

where 1 is an indicator function, and F t
u is the set of channels that user u sub-

scribed to at time t when the channel c was consumed. Essentially, rexplore(c|u) =

1 if the channel was not subscribed when consumed, otherwise rexplore(c|u) = 0.

We then substitute rtopic(c|u) in eqn. 5.6 with rexplore(c|u) and derive an exploratory

measure of a user u’ s listening, denoted as Plisten
explore(u). From another angle,

Plisten
explore(u) can be viewed as the percentage of time that user u explored new

information channels.

We show the distributions of users over Plisten
explore(u) and the groupwise aver-

age scores in Fig. 5.12. Both figures and ART statistical tests demonstrate that

the MIX intervention significantly increases P
listen
explore by 127.5% (FIE:∗). In other

132

1 2 3 4 5
Aggregated ratings

0.0

0.5

1.0

cu
m

. %
 o

f r
at

in
gs

ASP-SUB
ASP-MIX
POP-SUB
POP-MIX

(a) The cumulative distributions of aggregated
ratings (ONB×FIE:∗).

SUB MIX
Field intervention

3.0

3.5

4.0

Av
g.

 o
f a

gg
. r

at
in

gs

ASP
POP

(b) The average ratings
(ONB×FIE:∗).

Figure 5.13: Participants’ satisfaction (the averaged ratings of all indica-
tors): (a) cumulative distributions of aggregated ratings, and
(b) groupwise average ratings. The interaction between two
factors (ONB×FIE) significantly affects satisfaction — MIX im-
proves satisfaction if participants were onboarded with the
ASP, otherwise MIX shows negative effects. No single factor
alone has a significant effect.

words, the MIX feeds significantly encouraged participants to explore beyond

existing and potentially narrow information channels. The onboarding recom-

mendations (ONB) and the interaction between the two stages of recommenda-

tions (ONB×FIE) do not have significant effects.

5.5.3 User satisfaction

Four satisfaction indicators were surveyed and reported by participants after

the study was over (Section 5.3.3). Among 99 valid participants, 89 of them

responded to our email survey4 (Response rate: 89.9%). To quantitatively an-

alyze survey results, following the common practice [72], we convert the five

options in each survey question, i.e., not at all satisfied, slightly satisfied, neutral,

very satisfied, and extremely satisfied, to 1–5 numerical ratings.

4Both experimental factors and their interaction do not have significant effects on whether
or not a participant responded to the survey.

133

We found that satisfactions for all indicators are highly correlated. There-

fore, we aggregated them into one factor by taking the average of the ratings.

The distributions of the aggregated satisfaction ratings and the groupwise av-

erage values are shown in Fig. 5.13. Participants’ satisfaction is significantly

affected by the interaction between two factors (ONB×FIE: ∗); and the post-hoc

differences of differences test [102, 16] confirms the effects of one factor given

the other. In other words, if participants were onboarded with the popularity-

based recommender, applying the CF-based recommender to populate users’

home feeds significantly degraded users’ satisfaction, whereas if participants

were initially presented with a channel list ranked by their intentions, the CF-

based recommender used in the field showed positive effects. These findings

have important implications as to how the reinforcing nature of recommenda-

tions may improve or degrade utility and user experience (Section 5.6).

5.6 Implications and discussions

Our study results indicate significant interactions between recommendations

and intentions. We discuss our findings in light of theoretical and empirical

research on human decision making and suggest directions for designing better

recommendation systems that benefit end users.

5.6.1 Employing planning and intentions

Individuals face self-control challenges when making decisions about content

consumption, just as they do when managing diet or finance [109]. People

134

have troubles translating their intentions and goals into actions when facing

real-world decision-making problems. For example, prior research showed that

people rent documentaries in line with their “aspirational self” but were less

likely to actually consume this type of movie compared to more affective movies

such as action films [109]. Filter bubbles [116] are another example in which

users’ long-term interests do not match with short-term consumption of news.

To help people choose according to their long-term interests, our study sug-

gests to employ a deliberative thinking via planning in the form of preference

elicitation. As shown in Section 5.3.1, our onboarding system leveraged a pref-

erence elicitation-based interaction technique and an intention-aware recom-

mender system that allowed for the explicit inclusion of user intentions. Such

a design was shown to have significantly positive effects as users subscribed

according to their elicited intentions during onboarding and later followed up

on their plans when listening in the wild. Similar strategies were examined in

behavioral science literature suggesting that people planning ahead are more

likely to act on their intentions and to exhibit aspirational behavior in line with

their long term interests [58].

5.6.2 Encouraging exploration

Classical recommendation systems based on collaborative filtering and click-

based metrics are often criticized since they are likely to be overly optimized

to reinforce past behavior and preferences [78]. As a result, measures such as

novelty and diversity are increasingly explored both in research papers and in-

dustry practice in recent years [72, 178, 151]. Finding the right mix of novel

and familiar items can be challenging as it is not clear to what extent a certain

135

quality characteristic like novelty is truly desired in a given application for a

specific user and at a certain time. In the social and behavioral science literature

this is often formulated as the exploration-exploitation trade-off [5, 77, 14]. Our

results demonstrate that introducing recommendation systems in content plat-

forms that were mainly driven by user intentions provided benefits in the form

of user exploration, because recommendations helped people find choice alter-

natives that they were not aware of. However, how recommendation systems

may influence the explore-exploit dilemma in the long term is an open question

for future research.

5.6.3 Understanding user satisfaction

Our results show that users were satisfied when CF-based recommendations

(MIX) were delivered based on intention-driven subscriptions (ASP) at on-

boarding. This can be explained by the benefits of reinforcing users’ long-term

interests. Whereas when users’ initial subscriptions were only driven by chan-

nels’ popularity and not aspirational, CF-based recommendations ignored their

intentions and left them dissatisfied. Another possible explanation is the ex-

plainability and trust of recommendations. People are more likely to follow

recommendations they trust, and explaining recommendations is shown to in-

crease the trust [181]. Since the ASP-MIX hybrid recommender systems were

informed by stated users’ preferences, recommendations were implicitly ex-

plained and were easier to be perceived and understood by users. Whereas

when the POP-MIX systems were used, the explainability and trust of field rec-

ommendations was expected to be low.

136

Additionally, as shown in Section 5.5.3, we also observe high user satisfac-

tion under the POP-SUB interventions, in which users were left in their informa-

tion bubble populated with self-chosen popular items. This may be explained

by people’s inherent motivation to chase popular items [172] even if these items

were misaligned with users’ stated intentions; such content satisfies an impor-

tant, if implicit, aspect of people’s information needs and desires.

5.6.4 Optimizing for multiple objectives

Our study reveals benefits of jointly optimizing people’s information consump-

tion for multiple objectives. For example, for podcasts and other subscription-

based media, service providers should consider a hybrid form of recommender

that contains an intention-aware recommender for onboarding and a CF-based

recommender for field listening. This combination can support users’ intentions

while encouraging them to explore beyond existing channels. As a result, users

are likely to be more satisfied. More generally, with a global view of the rec-

ommendations that people are increasingly exposed to, we can jointly optimize

recommendation systems to support an individual’s aspirations and satisfaction

in other domains such as diet and time management.

5.6.5 Limitations of intention-agnostic metrics

Commonly-used metrics that quantify user experiences are often agnostic to

people’s intentions. As a result, these metrics mainly reflect the extent to which

recommendations engage people but overlook the utility of those engagements.

137

For example, in our study, total listening time and total number of subscriptions

show that people were equally active across different groups (Section 5.4.1),

but in reality, people in certain groups were less exposed to new information,

guided away from their aspirations, and less satisfied. Therefore, when probing

and evaluating the performance of recommendation systems, it is important to

condition metrics on individual intentions.

5.7 Conclusions

This chapter presented a randomized controlled field experiment that studies

the effects of recommendations on people’s content choices related to inten-

tions. Our study revealed how recommendations (1) modulate people’s choices

of topically relevant content, (2) affect the likelihood that people explore beyond

their existing information sources, and (3) jointly affect user satisfaction. We

discussed the implications and applications of our findings on the design, eval-

uation and understanding of recommendation systems. Our study confirms the

suspected importance of recommendations beyond discovering relevant infor-

mation. In particular, these systems implicitly alter online behavior in a man-

ner that can have profound implications for individuals and society [4]. Fu-

ture work is needed to study the generalization of these effects to wider demo-

graphic groups, and explore longer term effects of recommendations through

offline evaluation, simulations, and larger scale field experiments.

138

CHAPTER 6

GENERALIZATION OF RECOMMENDATION ALGORITHMS

6.1 Introduction

Today’s recommender systems, including user-centric recommenders presented

in previous chapters, have gone beyond simple collaborative or content-based

filtering algorithms to become large-scale learning machines that ingest and an-

alyze a wide range of information. For example, diverse user feedback signals

(ratings [13], click-through [73], likes [72], views [174]) and auxiliary, contextual

and cross-platform traces (images [71], video [32], audio [158] and other associ-

ated metadata [119]; as well as social networks [63], software tool traces [174],

and personal digital traces [72]). A state-of-the-art system [32] usually involves

numerous heterogeneous and complex sub-models that analyze and fuse high-

dimensional and multi-channel data streams, and each of these sub-models may

have different learning architectures and a large number of hyper-parameters

that need to be developed and maintained.

As a result, recommender system developers are facing an exponentially

larger design space given the multiple interdependent design decisions that

they need to make, such as: (1) which collaborative filtering model to use, (2)

which additional data to incorporate, (3) for each additional data, which fea-

ture extraction methods to use, and (4) how to integrate the extracted features

with the collaborative filtering part of the model. Moreover, researchers’ design

space now includes: identifying novel data sources to incorporate into the sys-

tem, developing new feature extractors, and experimenting with new ways to

integrate features with the user-item filtering. The software frameworks previ-

139

ously available for recommender systems are limited to “functional level” mod-

ularity (e.g., Librec [61] decomposes a recommender system into inference, pre-

diction, and similarity), which does not provide the modularity needed to build

and evaluate increasingly complex models. This chapter addresses key chal-

lenges of extensibility and adaptability.

On the one hand, traditional frameworks, such as MyMediaLite [55] and

LensKit [41], usually treat a recommendation algorithm as single and mono-

lithic. As a result, in order to experiment with a new method for even a small

part of the algorithm, researchers often need to re-implement the whole model

from scratch or extensively patch existing code. For example, to build a recom-

mendation algorithm that incorporates image data, a researcher needs to not

only implement the neural network for image analysis, but also re-build the

factorization algorithm (e.g., Probablistic Matric Factorization), because there is

no interface available in the traditional frameworks to access component mod-

ules. Significant rewriting is needed even when the recommendation is a simple

composition of existing models.

On the other hand, adapting traditional frameworks to diverse recommen-

dation scenarios requires tedious re-implementations, which may significantly

affect recommendation performance despite slight implementation differences

(e.g., different choices of hyper-parameters and regularization terms) [41]. We

argue that such re-implementations are inevitable if the frameworks are built

on diverse backend and programming languages, e.g., Java [61], C# [55], and

Python [74], because of the overhead and the opportunity cost of switching be-

tween different development environments. Additionally, existing frameworks

typically assume a single machine environment, which can not leverage the

140

computation power from distributed computing and modern hardware, e.g.,

GPU and TPU. Therefore, it is hard to be adopted when the model size increases.

To tackle these challenges, we propose a modular recommender-system de-

sign, where each recommender is a structured ensemble of reusable modules

with standard interfaces. This allows the recommendation system innovation

to be decomposed into (1) designing new modules, and (2) inventing new computa-

tional graphs that wire modules together. As demonstrated in Fig. 6.1, future re-

search can readily reuse existing modules and graphs without re-implementing

or modifying prior algorithms. Under such a paradigm, changes to a module

or the computational graph does not affect other components, and develop-

ment and testing can be more readily achieved via plug-in and go. Just as mod-

ular architectures and tools lead to rapid advances in other AI fields [30, 20, 118]

and network protocol simulation [19], a modular paradigm can significantly

reduce the development overhead and become fertile ground for extensible

and adaptable recommender system research. In addition, we propose to use

Tensorflow [1] as the standard backend for framework development. Because

Tensorflow can be easily deployed in diverse computing environments (e.g.,

embedded devices, single machine, and distributed cloud) and is optimized

for modern hardware, its use enables distributed and mini-batch (i.e., large-

scale dataset) training for OpenRec and can minimize the need for language-

switching re-implementations.

This chapter presents the initial design, implementation, and evaluation of

OpenRec, an open and modular framework that supports extensible and adapt-

able research in recommender systems. Specifically, we build such a framework

by (1) modularizing prior recommender systems, (2) identifying reusable mod-

141

clicks

item	text item	textitem	image

clicks

user	text

item	image item	text

clicks clicks

user	
text
user	
demogr

item	
text
item	
image

fusion
module

extraction	
module

interaction	
module

R-1 R-2

R-3 R-4

Figure 6.1: A modular view of recommendation algorithms. Each algo-
rithm (R-1 to R-4) is a structured ensemble of reusable modules
under three categories: extraction module, fusion module, and
interaction module. The color codex is shared throughout this
chapter. Arrows in the figure represent data flows.

ules and defining standard interfaces, and (3) iteratively implementing and de-

veloping in Tensorflow. In addition, we evaluate and demonstrate OpenRec in

the following three contexts.

• Reproducing monolithic implementations with OpenRec modular de-

sign. We extensively compare the performance of the modular implemen-

tations to the prior implementations and demonstrate that the modularity

in OpenRec does not degrade the models’ performance in terms of both

training efficiency and prediction accuracy. To the contrary, in many cases,

OpenRec outperformed the existing implementations due to the ability to

conduct large-batch training.

• Rapid prototyping using OpenRec as a sandbox. Using book recommen-

142

dation as an example, we illustrate how developers can use OpenRec to

address specific recommendation problems by efficiently prototyping and

bench-marking a large number of approaches with modules that are inter-

changeable.

• Developing new recommendation algorithms by extending existing

modules in OpenRec. We use OpenRec to build a time-aware movie

rating prediction algorithm for the Netflix dataset. We demonstrate that

OpenRec can significantly alleviate the development burden when explor-

ing new techniques.

The up-to-date OpenRec framework (Apache-2.0) is publicly available at:

https://openrec.ai

6.2 Evolution of recommender systems

In this section we briefly review the evolution of recommender systems. We

discuss how recommender systems have evolved from pure collaborative fil-

tering approaches to hybrid and content-aware models, and discuss the design

challenges that arise with such development.

6.2.1 Pure collaborative filtering models

Early recommender system research focused on designing collaborative filter-

ing models that process users’ past user-item interaction data (e.g., ratings,

click-through, etc.) to predict what users will like in the future [73, 13]. A well-

143

https://openrec.ai

known example is matrix factorization, where users’ past behaviors are encoded

in an incomplete user-item matrix, and the prediction is made by estimating

the values of the missing cells in the matrix with a low-rank assumption. Ma-

trix factorization and other collaborative filtering models achieved great results

in the Netflix competition [13], and a great amount of work has been devoted

to improving upon these original approaches. The most recent examples in-

clude Neural Collaborative Filtering [68] that utilizes a neural network to allow

for non-linear interactions between users and items, and Collaborative Metric

Learning [71], that approaches the collaborative filtering problem from a metric

learning perspective.

6.2.2 Hybrid and content-ware models

The original use cases of collaborative filtering algorithms were for the scenar-

ios where user-item interactions are abundant (e.g., movie recommendations on

Netflix or product recommendations on Amazon [99, 13]) and the user-item in-

teraction data alone is sufficient to make high quality recommendations. How-

ever, with digital services becoming more ubiquitous in daily life, there is a in-

creasing demand for recommender systems to work for other scenarios where

users have had little or no prior interaction with the system (i.e., the user cold

start scenarios), or for the scenarios where candidate items have not received

much feedback from users yet (i.e., the item cold start scenarios). Collaborative

filtering algorithms work poorly in such scenarios as the amount of interaction

data are too sparse for them to reliably estimate users’ preferences.

This demand for more powerful and diverse recommender systems, along

144

with the rapid advances in machine learning algorithms for content analysis,

has driven a new generation of research that goes beyond the user-item matrix;

in particular, new algorithms use various machine learning models to extract

relevant features from additional sources [134]. For example, specific algorithms

have been designed to extract item features from a large variety of signals, such

as text and image data associated with items; similarly, different approaches

have been proposed to extract user features from their social media traces, re-

views, or other public and personal digital traces [72]. The extracted features are

fused with the collaborative filtering portion of the model to allow the system to

get a deeper understanding of items and users. Such hybrid models often show

superior performance in cold-start scenarios, and continue to outperform the

collaborative filtering solutions later on [72, 67]. Moreover, the use of content

information also allows for more specific explanations to the recommendation

results as compared with the generic “users like you also like this” explanations

enabled by prior collaborative filtering based approaches.

6.3 Related frameworks

The rapid evolution of recommender systems (Section 6.2) has posed significant

challenges to the existing software frameworks. In this section, we briefly re-

view the limitations of existing solutions, and discuss why OpenRec is timely and

is preferable to modularizing existing frameworks. We show the core functions of

previous frameworks and their comparisons to OpenRec in Table. 6.1. Existing

solutions are limited in the following two aspects.

• Lack of algorithm level modularity support. Previous frameworks usu-

145

Table 6.1: Comparing OpenRec to existing software frameworks for rec-
ommender systems (Sys-m: system-level modularity, Algo-m:
algorithm-level modularity).

Framework Sys-m
Auxiliary

features
Backend Algo-m

MLlib [137] 7 7 7 7

MyMediaLite [55] 3 categorical 7 7

LensKit [41] 3 7 7 7

Surprise [74] 3 7 SciKits 7

PredictionIO [24] 3 categorical 7 7

Librec [61] 3 categorical 7 7

OpenRec 3 complex Tensorflow 3

ally provide modularity at the “functional level”, i.e., each recommender

is divided into functionally-independent components (e.g., train, predict,

and dataset). Such functionality-based modularity is convenient while de-

veloping new systems, but falls short when it comes to inventing and ex-

perimenting with complex algorithms, i.e., developers still need to build

algorithms monolithically. In addition, because there is no “algorithm-

level modularity”, it is non-trivial to add complex auxiliary features into

recommendation. Therefore, OpenRec addresses a timely need for the rec-

ommender system community.

• Lack of reliable backend support. As is shown in Table 6.1, previous

frameworks were built on either no explicit backend or a backend that

is not scalable and unfriendly to complex models, e.g., Scikit. With such

backends, the recommender systems can not leverage modern hardware,

such as GPUs, and is hard to scale to distributed computing environment.

146

Module
Interaction

Pointwise	MSE

Pointwise	MLP
…

Fusion

Concatenation

Average

Weighted	 sum

…

Extraction

LF

ResNet MLP

LSTM

AutoEncoder
…

Recommender

R-1:	click	logs,	text	
posts,	and	content	
topic	modeling.

R-2:	watch	history,	
content	visual	analysis,	
and	 activity	detection.

Utility

Sampler
Pairwise	
sampler

Pointwise	
sampler
…

Evaluator

…

AUC

Recall@K

Pairwise	 distance

… R-n:	
…

Figure 6.2: The architecture of OpenRec. A recommender is built out of
modules. All three components (Module, Recommender, and
Utility) can be seamlessly used together to conduct training,
evaluation, experimentation, and serving of recommenders.

It is also very cumbersome for the developers to build new functions as

there is little support for basic mathematical operations. Therefore, modu-

larizing based on a legacy backend is limiting. We develop OpenRec over

Tensorflow, a next generation computing engine for machine learning.

6.4 OpenRec framework

In this section, we describe the architecture of OpenRec. It views each recom-

mendation algorithm as a computational graph that connects reusable modules

together. OpenRec is comprised of two levels of abstractions - module and

recommender - along with a collection of utility functions (Fig. 6.2). Under

this framework, a module defines standard input/output interfaces for each

category of algorithmic component. A recommender provides mechanisms to

build end-to-end systems out of modules. Utility includes functions for effi-

147

Recommender

build_inputs(train)

build_user_extractions(train)

build_item_extractions(train)

build_extra_extractions(train)

build_default_fusions(train)

build_custom_fusions(train)

build_default_interactions(train)

build_custom_interactions(train)

build_extractions(train)

build_fusions(train)

build_interactions(train)

…

…

build_optimizer()

if		train==true

build_training_graph() build_serving_graph()

train=true train=false

train(...) serve(…) save(…) load(…)

Figure 6.3: Standard interfaces of the Recommender abstraction. It con-
tains procedures for constructing computational graphs, and
functions for model training, testing, saving and loading.

cient data sampling and model evaluation. In the rest of this section, we present

the details of each abstraction. Although we illustrate OpenRec with collab-

orative filtering approaches, the framework is also designed for more general

recommendation techniques, e.g., content-based, conversational and group rec-

ommendations. We discuss the generalization of the framework in Section 6.4.4.

6.4.1 Recommenders

The Recommender abstraction provides a standard way to construct recommen-

dation systems with modules (Section 6.4.2) and to easily conduct training and

testing. The design philosophy behind the recommender is to decouple the con-

148

build_shared_graph()

build_training_graph()

build_serving_graph()user	repr.

item	repr.

context	repr.

train=True train=False

outputs

loss

data

module	#1

module	#n

…

Extraction

Fusion

Interaction

Figure 6.4: The structure of the Module abstraction (Left: inputs, Right:
outputs).

struction of a complex system into many small steps, so that the system can be

easily extended to include new features. As shown in Fig. 6.3, it consists of

two major steps - build training graph and build serving graph, each of which calls

corresponding modules. When building the training graph, a sequence of func-

tions (i.e., build inputs, build extractions, build fusions, build interactions, and build

optimizer) is called with the flag train set to True, where the extraction, fusion,

and interaction modules are built through decomposed child functions. Simi-

larly, when building the serving graph, all of the functions above except build

optimizer are called with the flag train set to False. During model training, the

function train is called for each iteration; and during testing or evaluation, the

function serve is used to efficiently score items for a list of users. We show the

flexibility and extensibility of the recommender abstraction in Section 6.5 with

concrete examples.

149

6.4.2 Modules

Modules represent reusable components in a recommendation algorithm. As

discussed in Section 6.2, a recommender typically contains three components

that (1) model the interactions (including ratings, views, likes, thumb-ups, etc.)

between users and items in the targeted recommendation context; (2) derive a

user’s, an item’s or a context’s representation from a data trace (Fig. 6.4), such

as one-hot encoding, images, text, audio, video, location, demographic infor-

mation, etc.; and (3) fuse together multiple feature representations from users,

items, or environmental contexts. In OpenRec, we name components in these

three categories as interaction, extraction, and fusion modules respectively. As

shown in Fig. 6.4, OpenRec modules share the same conceptual architecture

and outputs (i.e., a loss and an output list) but ingest different forms of inputs.

Specifically, each module is composed of three core functions: build shared graph,

build training graph, and build testing graph. These functions are invoked based

on the value of a train flag that determines the mode (training or testing).

• Interaction Module. An interaction module takes representations from

users, items or interaction contexts as inputs and then calculates the loss

(during training) and item rankings (during testing). The inputs to the

interaction module are typically derived from one-hot encoding or auxil-

iary information using extraction and fusion modules. The derived loss

is used to drive the end-to-end training of the recommender system, and

the item rank is used for testing and real-time recommendations. For the

interaction module, we do not put any restriction on the number of users

and items allowed as inputs so that it is general enough to handle a wide

variety of collaborative filtering and content-based algorithms (e.g., Prob-

150

abilistic Matrix Factorization (PMF) is built on pairs of users and items,

whereas Baysian Personalized Ranking (BPR) requires triplets of users

and items). Our initial prototype of OpenRec includes implementations

of many interaction modules using state-of-the-art algorithms, e.g., pair-

wise logarithm used in BPR [124], pointwise mean square error (MSE) in-

troduced by PMF [129], pairwise euclidean distance adopted in Collabo-

rative Metric Learning (CML) [71], and pointwise cross entropy proposed

by Neural Matrix Factorization (NeuMF) [68].

• Extraction Module. An extraction module computes representations for a

data trace from users, items, or contexts. A simple example is to compute

a representation from a one-hot encoding, which performs a basic lookup

operation in an embedding matrix. Such a module is leveraged by tra-

ditional recommender systems without using auxiliary information, and

we refer to it as a Latent Factor module. The development of extraction

modules will benefit from advancements in other machine learning fields

(e.g., computer vision, natural language processing and speech process-

ing). Models from these fields can be introduced to recommender systems

to analyze multi-modal data from users and items. Because OpenRec is

highly modular and implemented on Tensorflow, introducing a new con-

tent analysis model is rather straightforward and efficient. In our initial

prototype, we implemented two general extraction modules, Multi-layer

Perceptron (MLP) and Latent Factor (LF). We expect an open source frame-

work like OpenRec will result in development of more sophisticated mod-

els dedicated to analyzing specific data types, such as Convolutional Neu-

ral Network (CNN) for images and Recurrent Neural Network (RNN) for

sequential data.

151

• Fusion Module. In many recommendation scenarios, users, items, and en-

vironmental context may have multiple data sources. For example, in the

context-aware recommendation [11] and immersive recommendation [72],

a user can be modeled by many personal data traces, e.g., emails, tweets

and Facebook posts. To bridge the gap between multiple extraction mod-

ules and a single interaction module, an fusion module is designed to fuse

multiple extraction modules together (Fig. 6.4). We prototype two intu-

itive fusion modules, i.e., concatenation and element-wise average.

6.4.3 Utility functions

In OpenRec, a set of utility functions are included for the ease of model train-

ing and evaluation. The model training for recommendation systems usually

involves user-item sampling. For example, in BPR, (user, positive-item, negative-

item) need to be sampled for each training batch. The samplers take the data

formatted in Numpy dict as inputs and produce batches of training or vali-

dation data for a recommender. We implement popular sampling procedures

(e.g., pointwise and pairwise sampling) in the OpenRec framework to drive the

training process. In addition, to provide standard model testing, we implement

common evaluation metrics (e.g., MSE, Recall@K and AUC) which can be seam-

lessly integrated with the constructed recommendation model.

152

6.4.4 Generalization

Since OpenRec makes few assumption about users and items, it can be used for

a wide range of recommendation techniques and scenarios, e.g., recommenda-

tions with different forms of feedback, as well as interactive, conversational,

and group recommendation.

• For different forms of feedback signals, researchers can customize sam-

pling strategies and interaction modules, for example, using pointwise

sampling with the pointwise MSE module for explicit feedback, and pair-

wise sampling with the pairwise logarithm module for implicit feedback.

• For interactive and conversational recommender systems, the optimiz-

ers can be designed to update user and item representations in the active-

learning settings [177]. For every iteration, a recommender makes recom-

mendations and updates model parameters according to users’ and items’

representations and their real-time interactions.

• For group recommendations, as OpenRec uses Numpy structured arrays

as the input data format and does not have restrictions on the number of

extraction modules. Users can be grouped based on the additional group

id inputs to the sampler.

6.5 Experiments and use cases

In this section, we demonstrate the validity, efficiency and extensibility of Open-

Rec under the following three concrete contexts.

153

• Validity. By comparing the modular implementations with the previous

ad-hoc ones, we demonstrate that modularizing recommendation algo-

rithms does not affect the performance and efficiency. Instead, because

OpenRec is built on an open-source and industry-standard deep learning

tool, it can more efficiently conduct the training. (Section 6.5.1)

• Efficiency. Using OpenRec as a sandbox, developers are able to quickly

and efficiently prototype and experiment with different settings of recom-

mender systems and look for the optimal solution (Section 6.5.2).

• Extensibility. By extending and reusing existing modules, OpenRec sig-

nificantly reduces the overhead of implementing new recommendation

algorithms (Section 6.5.3).

We show the graphical illustration of the modular implementations in the

main content and a sample pseudocode snippet in Section 6.5.3. More examples

are available online at https://openrec.ai.

6.5.1 Validity: reproducing monolithic implementations

In order to test whether modularization affects the accuracy and efficiency of the

recommendation algorithms, we compare the OpenRec implementations with

the implementations released by the original algorithm authors. We use the

same model structures and parameter settings from the original papers but re-

place the training strategies with the standard optimization methods adopted

in OpenRec, e.g.. mini-batch stochastic gradient descent. Specifically, we exper-

iment with the following three algorithms in this chapter, each of which repre-

sents recommender systems with different complexity levels.

154

https://openrec.ai

inputs user	extractions item	extractions interactionsBPR

LatentFactor PairwiseLog
Extraction	module Interaction	module

… …Modules

Figure 6.5: Implementing BPR with OpenRec (45 lines). We use rectan-
gles to represent functions in a Recommender and shade the
reusable modules and implementations. An arrow denotes an
adoption or an inheritance. (Lines of code does not include
blank and import lines.)

Bayesian Personalized Ranking (BPR)

As introduced by Rendle et al. [124], Bayesian Personalized Ranking learns

latent representations for users and items by using a pairwise ranking loss

(eqn. 6.1). It is one of the most popular method used under the traditional rec-

ommendation context without considering auxiliary information.

∑
(u,i, j)∈DS

lnσ(x̂u,i − x̂u, j) − λΘ‖Θ‖, (6.1)

where x̂u,i = βu + βi + γT
u γi. γ represents a latent representation for a user or an

item, and β denotes the corresponding bias term. DS contains training triplets

(u, i, j) where user u likes item i but does not indicate her preference for item j.

To implement the vanilla version of the BPR model using OpenRec, we em-

ploy the Latent Factor (LF) extraction module to compute latent representations

for users and items respectively and a pairwise logarithm interaction module

that takes users’ and items’ representations and computes the loss (Fig. 6.5).

Note that we do not need to re-implement the existing modules to run the ex-

periment. Building such a recommender system can be achieved by simply

putting together the reusable modules with standard interfaces.

155

0 5 10 15 20 25 30 35
Training time (s)

0.50

0.52

0.54

0.56

0.58

0.60

Te
st

 A
UC

BPR-OpenRec
BPR-original
BPR-MyMediaLite

Figure 6.6: Testing performance on tradesy.com dataset [67] in terms of
AUC (BPR-OpenRec, BPR-original, and BPR-MyMediaLite).

We compare the OpenRec modular implementation with the implementa-

tion released by He et al. [67] and MyMediaLite library [55] and evaluate them

against tradesy.com dataset [67], where the products that users want and bought

are treated as positive feedback. As a result, 19,243 users and 165,906 items are

included in the experiments. For each user, we randomly sample an item that

she likes for validation and another one for testing, which is consistent with the

strategy used in the original paper [67]. We use the same parameter settings

as [67] (λΘ is set to 0.1, and the dimensionality of γ is set to 20) and conduct

the evaluations on an Amazon EC2 c4.4xlarge instance, which contains 16 CPU

cores and 30 GB of memory.

We measure models’ performance in terms of Area Under the ROC Curve

(AUC), as defined in eqn. 6.2, against the training time.

AUC =
1
U

U∑
u=1

1
|P(u)|

∑
(u,i)∈P(u),(u, j)∈N(u) δ(x̂u,i > x̂u, j)

|N(u)|
, (6.2)

where P(u) contains items user u likes in the validation/testing dataset, and

N(u) contains items that did not receive any feedback signals from user u.

The results presented in Fig. 6.6 show that the modular implementation

156

inputs user	extractions item	extractions interactionsVBPR

LatentFactor
Extraction	module

…Modules

BPR inputs user	extractions item	extractions interactions

MLP Concatenation
Fusion	module

fusions

Figure 6.7: Implementing VBPR with OpenRec (50 lines). We use the same
annotations as Fig. 6.5.

achieves comparable performance to the best performed BPR implementation,

and significantly outperforms the implementation from previous recommenda-

tion libraries (MyMediaLite). In other words, modularization does not affect the

algorithm accuracy and efficiency for simple models such as BPR.

Visual Bayesian Personalized Ranking (VBPR)

The vanilla BPR model does not incorporate any auxiliary information. To in-

vestigate recommendation scenarios where such information is leveraged, the

second model that we experiment with is Visual Bayesian Personalized Ranking

(VBPR), as proposed by [67]. VBPR incorporates visual features into recommen-

dation by learning a transformation function f that projects visual features into

the item embedding space. VBPR minimizes the same loss function as BPR but

models x̂u,i as follows.

x̂u,i = βu + βi + γT
u γi + θT

u (E fi), (6.3)

where fi is the visual feature for item i, and E is a learnable projection matrix1.

To build such a model with OpenRec, we can easily extend the BPR recom-

1Compared to the original VBPR, we did not include the visual biases

157

0 2000 4000 6000 8000 10000 12000
Training time (s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 A
UC

VBPR-OpenRec
VBPR-original

Figure 6.8: Testing performance on tradesy.com dataset [67] in terms of
AUC (VBPR-OpenRec and VBPR-original).

mender and modify the functions build inputs, and build item extractions. We

change the build item extractions function from a LF extraction module to a con-

catenation fusion module that takes as inputs the representations derived from

LF and MLP extraction modules, as shown in Fig. 6.7. At the same time, other

functions can be directly reused except adding additional inputs for visual fea-

tures. We evaluate the VBPR implementation with the same tradesy dataset and

computing environment, but set λΘ to be 0.1 and the dimensionality of γ and θ

to be 10. The items’ visual features are extracted using the caffe reference model

as released by the He et al. [67].

As shown in Fig. 6.8, compared to the previous implementation by He et

al. [67], the model implemented by OpenRec is significantly faster (more than

103 times) and yields better performance in terms of AUC. The reason for such

a phenomenon is that the prior implementation uses a batch size of 1 for the

training while OpenRec is able to use much larger mini-batches (batch size is

set to 1000) and fully utilize the available hardware resources, e.g., multi-core

and GPU, using Tensorflow (We did not use GPU in the experiments for fair

comparison). Under the scenario where much auxiliary information is incorpo-

rated, the larger batch size brings significant benefits, and OpenRec makes such

158

Table 6.2: Testing performance on citeulike dataset [162] in terms of AUC
and Recall@K (CDL-OpenRec and CDL-Original).

Implementation AUC R@10 R@50 R@100

CDL-OpenRec 0.923 0.107 0.246 0.343

CDL-Original 0.918 0.099 0.248 0.349

benefits easily available to the end developers. This example also indicates the

need for a benchmarking platform like OpenRec, as directly comparing the per-

formance reported in the literature may be problematic, especially in the cases

where some ad-hoc implementation details make significant changes to the rec-

ommendation performance.

Collaborative Deep Learning (CDL)

The third algorithm that we explore is Collaborative Deep Learning (CDL), an

algorithm built upon the framework of Probabilistic Matrix Factorization (PMF)

that uses a de-noising auto-encoder to incorporate text into the recommenda-

tions [162]. We refer readers to the original paper [162] for the technical details.

Similar to VBPR, CDL can be implemented by extending the PMF recommender,

and the extension is analogous to the Fig. 6.7. We evaluate CDL implementa-

tions on the citeulike dataset [162], which contains 5,551 users and 16,980 items

and extracts item features using bag-of-words approach. We leverage the same

strategy as used in the original paper to split the data into training and testing.

The evaluation is conducted under the optimal parameter settings suggested

by [162] and on a desktop machine with 8 CPU cores and 16 GB of memory. The

performance of each implementation is measured by AUC and Recall@K after

convergence. As shown in Table. 6.2, the results stay consistent with the find-

159

ings in the previous BPR and VBPR examples - the modular implementation of

OpenRec does not degrade the performance and can completely reproduce the

results from the original implementations.

6.5.2 Efficiency: quick prototyping and experimentation

In this section, we show that because of its modular nature, OpenRec can be

used as a sandbox for quick designing, prototyping and evaluation in recom-

mendation system research and development. We demonstrate this in the con-

text of building a book recommendation system with rich context and content

information, where much information is available from many different chan-

nels, including users’ purchasing histories, books’ content, metadata, user re-

views and cover images. Therefore, developers not only need to decide what

information to include in the recommender system, but also need to choose ap-

propriate algorithms to analyze data with different modalities. In the rest of

this section, we first describe the dataset for experimentation and then show the

power of OpenRec in assisting and accelerating such a prototyping process.

Amazon book recommendation dataset.

We conduct experiments using an Amazon book recommendation dataset de-

rived from an Amazon review data dump released by [106, 105]. The goal of the

system is to recommend books that users are willing to buy. In this experiment,

we focus on the utilities of three data sources - users’ book purchasing history,

users’ purchases outside of book category and books’ cover images. We include

users who have at least 2 purchases in the book category and 5 purchases in non-

160

inputsUserVisualPMF

LatentFactor
Extraction	module

…Modules

VisualPMF inputs

MLP Addition
Fusion	module

…

user	extractions item	extractions interactions

user	extractions item	extractions interactions

fusions

fusions

Figure 6.9: Implementing UserVisualPMF with OpenRec (32 lines). We
use the same annotations as Fig. 6.5.

book categories, which ends up with a dataset containing 99,473 users, 450,166

books and 996,938 purchases. For each user, we derive a user feature by tak-

ing the bag-of-words representation of the labels for the products purchased in

non-book categories. For each book, a visual feature is extracted based on the

cover image using caffe reference model [79]. We divide the dataset into train-

ing/validation/testing by randomly sampling a purchase record for each user

for validation and another one for testing.

What information to include?

To decide what information to include in the book recommender system, we

need to experiment with combinations of the following three data sources:

(A) purchasing histories, (B) user features, and (C) visual features - PMF(A),

UserPMF(A+B), VisualPMF(A+C), and UserVisualPMF(A+B+C). Previously,

experimenting on these models required monolithic development for each of

them independently, which is a cumbersome and inefficient process. With

OpenRec, the UserPMF and VisualPMF are direct extensions of PMF, and the

model UserVisualPMF is an extension of UserPMF or VisualPMF. To incorpo-

rate users’ or items’ features, we project them into a low-dimensional embed-

161

ding space with a multilayer perceptron and treat the outputs as the prior for

final representations. In other words, the users’ or items’ representations are

the element-wise addition (fusion) between the projected features and the cor-

responding latent factors. We implement UserVisualPMF as shown in Fig. 6.9

(the implementations for VisualPMF and UserPMF are likewise). As the imple-

mentation extends most of the functions from VisualPMF and builds additional

functions using reusable modules, the overhead of building UserVisualPMF is

significantly reduced compared to a monolithic approach. Other fusing strate-

gies such as concatenation are also applicable here, and OpenRec is intuitive in

supporting such experiments as well. To compare the performance of these rec-

ommender systems, we select the best performed L2 regularization term among

{0.01, 0.001, 0.0001} using the validation set, and then report the AUC and Re-

call@K on the testing set. Because of the large number of items, for each user,

we randomly sample 1000 items that did not receive any feedback signals to

calculate performance metrics.

As shown in Fig. 6.10(a), in terms of AUC, adding visual features or user

features significantly improves the recommendation performance, and the best

performance is achieved when only visual features are incorporated. How-

ever, in terms of Recall@K, the PMF model performs relatively well and the

VisualPMF is able to outperform it when K ≥ 40. From these results, we can

conclude that (1) in general, incorporating auxiliary features is helpful to book

recommendations but it does not mean that more features always translate to

better performance, and (2) the model selection is contingent on the metric that

we want to optimize.

162

20 40 60 80 100
K

0.20

0.25

0.30

0.35

0.40

Re
ca

ll@
K

PMF, AUC=0.637
VisualPMF, AUC=0.700
UserPMF, AUC=0.671
UserVisualPMF, AUC=0.689

(a) Different levels of complexity.

20 40 60 80 100
K

0.15

0.20

0.25

0.30

0.35

0.40

Re
ca

ll@
K

VisualGMF, AUC=0.713
VisualPMF, AUC=0.700
VisualBPR, AUC=0.673
VisualCML, AUC=0.710

(b) Different interaction modules.

Figure 6.10: Testing performance in book recommendations in terms of
AUC and Recall@K.

VisualCML

Modules

VisualBPR

inputs

inputs

user	extractions item	extractions interactions

user	extractions item	extractions interactions

fusions

fusions

Pairwise	distance
Interaction	module

…

Figure 6.11: Implementing VisualCML with OpenRec (7 lines). We use the
same annotations as Fig. 6.5. The model and training pseu-
docode are presented in Listing 1 and 2 respectively.

Which algorithm to use?

As is studied in the previous experiment, VisualPMF significantly outperforms

other systems in terms of AUC. Another interesting question is whether PMF is

the best collaborative filtering algorithm under such a recommendation context?

We can use OpenRec to quickly investigate this question by leveraging differ-

ent interaction modules and reusing the rest of the algorithmic components.

Specifically, we show the performance of VisualPMF, VisualBPR, VisualGMF

163

from openrec.recommenders import VisualBPR
from openrec.modules.interactions import PairwiseEuDist

class VisualCML(VisualBPR):

def _build_default_interactions(self, train):
if train:

self._interaction_train = PairwiseEuDist(train=True,..)
else:

self._interaction_serve = PairwiseEuDist(train=False,..)

Listing 1: Pseudocode of an OpenRec implementation for the VisualCML
recommender (Section 6.5.2).

from openrec import ModelTrainer
from openrec.utils import Dataset
from openrec.recommenders import VisualCML
from openrec.utils.evaluators import AUC
from openrec.utils.samplers import PairwiseSampler

raw_train_data, raw_test_data = load_raw_data()
train_dataset = Dataset(raw_train_data, .., name='Train')
test_dataset = Dataset(raw_test_data, .., name='Test')

model = VisualCML(batch_size=512, ..)
sampler = PairwiseSampler(batch_size=512, dataset=train_dataset)
model_trainer = ModelTrainer(batch_size=512, dataset=train_dataset,

model=model, sampler=sampler, ..)
auc_evaluator = AUC()

model_trainer.train(num_itr=1e4, eval_datasets=[test_dataset],
evaluators=[auc_evaluator], ..)

Listing 2: Pseudocode of training VisualCML with OpenRec.

and VisualCML in Fig. 6.10(b). The sample implementation of VisualCML is

shown in Fig. 6.11, which demonstrates that OpenRec provides an elegant and

efficient way to quickly experiment with alternative system components.

As shown in the Fig. 6.10(b), varying the interaction module does make a

difference in recommendation performance, and the best choice of the interac-

164

inputs user	extractions item	extractions interactionsIterative
algorithm

Modules tLatentFactor Pointwise	MSE
Extraction	module Interaction	module

… …LatentFactor

Figure 6.12: Implementing an iterative and temporal model with OpenRec
(57 lines). We use the same annotations as Fig. 6.5.

tion module is dependent on the metric that we want to optimize. For example,

VisualCML performs the best in terms of Recall@10, while VisualGMF achieves

the best ranking performance, i.e., AUC.

The above examples also illustrate that there is no clear-cut solution to de-

sign a better recommender system. Design decisions involve trade-offs and re-

quire careful experimentation and benchmarking. With the modular design of

OpenRec, we are able to support such a development process and allow exper-

imentation of different designs with minimal overhead.

6.5.3 Extensibility: developing new algorithms via extension

In this section, we demonstrate how researchers can use OpenRec to de-

velop new recommendation algorithms by directly extending existing modules.

Specifically, we develop a light-weight, iterative and temporal recommenda-

tion model for movie rating prediction (similar to recent recommendation mod-

els [89, 168] that incorporate temporal patterns). We build multi-layer deep neu-

ral networks to project user and item vectors from time t− 1 to t, i.e., γt
u = f (γt−1

u)

and γt
i = g(γt−1

i) where f and g are two separate multi-layer perceptron, and the

most recent user and item latent representations are dot-producted to predict

165

the user-item ratings. To develop such a model with previous software frame-

works, we would need to build everything from scratch even if there are many

existing implementations of matrix factorization and multi-layer perceptrons

available. However, using OpenRec, such a temporal model can be built by im-

plementing a new extraction module tLatentFactor that executes the transition

functions f and g and produces user and item vectors at time t, and directly ex-

tending the existing Pointwise MSE and LatentFactor modules, as Fig. 6.12 shows.

This is possible because of the highly-modular nature of OpenRec. To train the

model, we use traditional mean square error as the loss with L2 regularization

to drive the optimization. Because OpenRec is built on a Tensorflow backend,

benefits such as automatic differentiation are readily available to the developers.

We evaluate our temporal model using the Netflix dataset [13] and compare

it to the traditional matrix factorization (MF) implementation from MyMedi-

aLite. We update users’ and items’ representations daily2 and validate on each

batch before training (Each data point is only used once). The user and item vec-

tors are initialized using MF over the first 3/4 of the dataset (75M ratings). We

refer readers to the OpenRec online repository for additional parameter settings.

The experimental results demonstrate that our model significantly outperforms

the MF baseline by 6% in terms of MSE (0.066 for ours and 0.071 for MF) after

only training on 3 days of rating data, which justifies the merits of temporal

patterns. Note that our model is not intended to be the state-of-the-art in tem-

poral recommendation but rather as an example of how researchers can easily

use OpenRec to explore their ideas.

2We only make updates for users and items that have rating during that day.

166

6.6 Conclusions

This chapter introduced OpenRec, a modular framework designed to support

extensible and adaptable development and research in recommender systems.

Through careful experiments and case studies, we demonstrated the value of

modularity and reusability. Moving forward, future work includes: standard-

izing interfaces; building new modules, recommenders, and utility functions

(such as NDCG); evaluating models against standard datasets and criteria; and

creating modularized models with non-neural network structures. We hope

OpenRec can provide infrastructural support for broader and systematic explo-

ration of personalization methods from consumers’ and societal perspectives.

167

CHAPTER 7

FUTURE WORK

The work described in this thesis addressed the design, implementation and

evaluation of user-centric recommendation systems. Moving forward, as intel-

ligent systems become increasingly pervasive, future research needs to address

the challenges that arise in new domains of personalization. And beyond in-

dividuals’ utility, building responsible recommenders should additionally con-

sider societal needs and balance them with commercial interests. Below are

further discussions of future work.

Developing personalization algorithms and methods for intelligent assis-

tants. Intelligent assistants (e.g., Amazon Alexa, Microsoft Cortana, Apple Siri,

Google assistants, and Adobe creative assistants) recommend content, prod-

ucts, actions, and tools to improve productivity and creativity. Recommenda-

tions in this emerging setting introduce new research challenges and oppor-

tunities. First, user interactions with intelligent assistants are sporadic, which

differs from traditional recommendation settings where users almost continu-

ously interact with online systems. In other words, personal assistants need to

model user behavior and preferences through sparse interactions. A potential

approach to addressing this problem is to bootstrap user profiles from cross-

platform data traces, as shown in Chapter 3. In addition, intelligent assistants

are inherently interactive, which requires a new algorithmic framework to opti-

mize the user–system feedback loop for user modeling, potentially in the form

of conversations. This may significantly build upon and extend prior human-in-

the-loop research. An example of such an algorithm is discussed in Chapter 4.

Lastly, recommendations from personal assistants need to be context-aware (i.e.,

168

aware of time, location, weather, and mood). Future research should develop

methods for assistants to sense and incorporate personal and environmental

context. This can potentially be achieved by leveraging multimodal sensing

data from mobile and wearable devices and external knowledge bases.

Personalization and recommendation as applied to education and well-

ness applications. Recommendation systems are integral components of per-

sonalized learning and precision health (medicine) applications. For exam-

ple, recommending courses and personalizing learning paces in online educa-

tion platforms; and balancing working time and suggesting exercises for better

health outcomes. For these application scenarios, future research challenges

include: (1) Incorporating necessary domain knowledge into personalization

models. We can approach this challenge by exploring re-ranking techniques (as

shown in Chapter 4) and innovative designs of objective functions that drive

the end-to-end training of recommendation models. (2) Building interpretable

and accountable systems — adopting health or learning advice can be costly

and risky, and can even have a lifelong impact on people’s lives. Therefore,

making predictive models interpretable and explaining the recommendations

can help people make informed decisions. (3) Enabling user control. Algorith-

mic recommendations inevitably make mistakes. Enabling users to control and

give feedback on recommendations easily can steer the systems when they are

divergent from users’ aspirations.

Open platforms and tools for research, experimentation, and deployment.

Building, deploying and investigating recommendation and personalization

systems under different scenarios is complex. Implementing proposed inno-

vations in this space from the ground up is error-prone, impedes research col-

169

laboration and iteration, and is often not reproducible. Built on the OpenRec

library developed in this thesis (Chapter 6), future work should continue refin-

ing and innovating on open-source platforms and tools, including algorithms,

simulation environments, datasets, and modular interfaces, so that the research

community can build on them and practitioners can use them for real-world

deployments. To make recommenders more user-centric, it is particularly im-

portant to reduce the friction associated with adoption in real–world systems.

Understanding and mitigating unintended consequences of recommenda-

tion and personalization. Personalization algorithms have profound impacts

on people’s daily lives and our society. For example, in Chapter 5, we show that

recommendation systems can modulate people’s content choices related to their

aspirations. However, in reality, many impacts are not intended when develop-

ing personalization solutions, e.g., reduced productivity and creativity, altered

views and values, biases and unfairness, risk inclination behavior [49, 75], and

invasion of user privacy. It is critical to understand and mitigate these conse-

quences as personalization techniques are getting deployed. We can approach

this problem in three directions: First, applying counterfactual reasoning and

causal inference on large-scale behavioral data, which logs how people’s behav-

ior and choices change over time. This technique has been explored in Chapter 2

and is shown to produce promising results in debiasing recommender evalua-

tion. Second, conducting field experiments to measure the effects of different

recommendation interventions (as shown in Chapter 5). Third, building nu-

merical simulation environments by leveraging human choice models. Recent

work [25] has shown promising results in this direction.

170

BIBLIOGRAPHY

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Control-
ling popularity bias in learning-to-rank recommendation. In Proceedings of
the Eleventh ACM Conference on Recommender Systems, pages 42–46. ACM,
2017.

[3] Eytan Adar, Mira Dontcheva, and Gierad Laput. Commandspace: mod-
eling the relationships between tasks, descriptions and features. In Pro-
ceedings of the 27th annual ACM symposium on User interface software and
technology, pages 167–176. ACM, 2014.

[4] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware rec-
ommender systems. In Recommender systems handbook, pages 217–253.
Springer, 2011.

[5] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Raghu Ra-
makrishnan. Content recommendation on web portals. Communications
of the ACM, 56(6):92–101, 2013.

[6] Deepak Agarwal, Bee-Chung Chen, Qi He, Zhenhao Hua, Guy Lebanon,
Yiming Ma, Pannagadatta Shivaswamy, Hsiao-Ping Tseng, Jaewon Yang,
and Liang Zhang. Personalizing linkedin feed. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1651–1660. ACM, 2015.

[7] Lenore Arab, Deborah Estrin, Donnie H Kim, Jeff Burke, and Jeff Gold-
man. Feasibility testing of an automated image-capture method to aid
dietary recall. European journal of clinical nutrition, 65(10):1156–1162, 2011.

[8] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. In ACM-SIAM symposium on Discrete algorithms, 2007.

[9] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing,
2002.

171

[10] Eytan Bakshy, Solomon Messing, and Lada A Adamic. Exposure to ideo-
logically diverse news and opinion on facebook. Science, 348(6239):1130–
1132, 2015.

[11] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. Matrix factorization
techniques for context aware recommendation. In Proceedings of the fifth
ACM conference on Recommender systems, pages 301–304. ACM, 2011.

[12] Oscar Beijbom, Neel Joshi, Dan Morris, Scott Saponas, and Siddharth
Khullar. Menu-match: restaurant-specific food logging from images. In
Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on,
pages 844–851. IEEE, 2015.

[13] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35, 2007.

[14] Oded Berger-Tal, Jonathan Nathan, Ehud Meron, and David Saltz. The
exploration-exploitation dilemma: a multidisciplinary framework. PloS
one, 9(4):e95693, 2014.

[15] Jana Besser, Martha Larson, and Katja Hofmann. Podcast search: User
goals and retrieval technologies. Online information review, 2010.

[16] Robert J Boik. Interactions, partial interactions, and interaction contrasts
in the analysis of variance. Psychological Bulletin, 86(5):1084, 1979.

[17] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–
mining discriminative components with random forests. In Computer
Vision–ECCV 2014, pages 446–461. Springer, 2014.

[18] Danah Boyd. Streams of content, limited attention: The flow of informa-
tion through social media. Educause Review, 45(5):26, 2010.

[19] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
et al. Advances in network simulation. Computer, 33(5):59–67, 2000.

[20] Denny Britz, Anna Goldie, Thang Luong, and Quoc Le. Massive Explo-
ration of Neural Machine Translation Architectures. ArXiv e-prints, March
2017.

172

[21] JR Brotherhood. Nutrition and sports performance. Sports Medicine,
1(5):350–389, 1984.

[22] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[23] Junghoon Chae, Insoo Woo, SungYe Kim, Ross Maciejewski, Fengqing
Zhu, Edward J Delp, Carol J Boushey, and David S Ebert. Volume estima-
tion using food specific shape templates in mobile image-based dietary
assessment. In IS&T/SPIE Electronic Imaging, pages 78730K–78730K. In-
ternational Society for Optics and Photonics, 2011.

[24] Simon Chan, Thomas Stone, Kit Pang Szeto, and Ka Hou Chan. Predictio-
nio: a distributed machine learning server for practical software develop-
ment. In Proceedings of the 22nd ACM international conference on Information
& Knowledge Management, pages 2493–2496. ACM, 2013.

[25] Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How
algorithmic confounding in recommendation systems increases homo-
geneity and decreases utility. arXiv preprint arXiv:1710.11214, 2017.

[26] Shuo Chang, F. Maxwell Harper, and Loren Terveen. Using groups of
items for preference elicitation in recommender systems. In CSCW, 2015.

[27] Li Chen and Pearl Pu. Critiquing-based recommenders: survey and
emerging trends. User Modeling and User-Adapted Interaction, 22(1-2):125–
150, 2012.

[28] Justin Cheng, Caroline Lo, and Jure Leskovec. Predicting intent using ac-
tivity logs: How goal specificity and temporal range affect user behavior.
In Proceedings of the 26th International Conference on World Wide Web Com-
panion, pages 593–601. International World Wide Web Conferences Steer-
ing Committee, 2017.

[29] Edward Choi, Mohammad Taha Bahadori, Elizabeth Searles, Catherine
Coffey, and Jimeng Sun. Multi-layer representation learning for medical
concepts. arXiv preprint arXiv:1602.05568, 2016.

[30] François Chollet et al. Keras. https://github.com/fchollet/
keras, 2015.

[31] Felicia Cordeiro, Elizabeth Bales, Erin Cherry, and James Fogarty. Re-
thinking the mobile food journal: Exploring opportunities for lightweight

173

https://github.com/fchollet/keras
https://github.com/fchollet/keras

photo-based capture. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 3207–3216. ACM, 2015.

[32] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 2016.

[33] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmen-
tation via multi-task network cascades. arXiv preprint arXiv:1512.04412,
2015.

[34] Elizabeth M Daly, Werner Geyer, and David R Millen. The network effects
of recommending social connections. In Proceedings of the fourth ACM con-
ference on Recommender systems, pages 301–304. ACM, 2010.

[35] Mahashweta Das, Gianmarco De Francisci Morales, Aristides Gionis, and
Ingmar Weber. Learning to question: leveraging user preferences for
shopping advice. In KDD, 2013.

[36] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Liv-
ingston, et al. The youtube video recommendation system. In Proceedings
of the fourth ACM conference on Recommender systems, pages 293–296. ACM,
2010.

[37] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009.

[38] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation
and analysis of personalized search strategies. In Proceedings of the 16th
international conference on World Wide Web, pages 581–590. ACM, 2007.

[39] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[40] Michael Ekstrand, Wei Li, Tovi Grossman, Justin Matejka, and George
Fitzmaurice. Searching for software learning resources using application
context. In Proceedings of the 24th annual ACM symposium on User interface
software and technology, pages 195–204. ACM, 2011.

174

[41] Michael D Ekstrand, Michael Ludwig, Joseph A Konstan, and John T
Riedl. Rethinking the recommender research ecosystem: reproducibility,
openness, and lenskit. In Proceedings of the fifth ACM conference on Recom-
mender systems, pages 133–140. ACM, 2011.

[42] Michael D Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D Ek-
strand, Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera.
All the cool kids, how do they fit in?: Popularity and demographic biases
in recommender evaluation and effectiveness. In Conference on Fairness,
Accountability and Transparency, pages 172–186, 2018.

[43] Michael D Ekstrand and Martijn C Willemsen. Behaviorism is not enough:
better recommendations through listening to users. In Proceedings of the
10th ACM Conference on Recommender Systems, pages 221–224. ACM, 2016.

[44] Andrew J Elliot and Judith M Harackiewicz. Goal setting, achievement
orientation, and intrinsic motivation: A mediational analysis. Journal of
personality and social psychology, 66(5):968, 1994.

[45] David Elsweiler and Morgan Harvey. Towards automatic meal plan rec-
ommendations for balanced nutrition. In Proceedings of the 9th ACM Con-
ference on Recommender Systems, pages 313–316. ACM, 2015.

[46] Leonard H Epstein, Rena R Wing, Barbara C Penner, and Mary Jeanne
Kress. Effect of diet and controlled exercise on weight loss in obese chil-
dren. The Journal of pediatrics, 107(3):358–361, 1985.

[47] Kevin J Eschleman, Jamie Madsen, Gene Alarcon, and Alex Barelka. Ben-
efiting from creative activity: The positive relationships between creative
activity, recovery experiences, and performance-related outcomes. Journal
of Occupational and Organizational Psychology, 87(3):579–598, 2014.

[48] Deborah Estrin. Small data, where n= me. Communications of the ACM,
57(4):32–34, 2014.

[49] Peter Fischer, Evelyn Vingilis, Tobias Greitemeyer, and Claudia Vogrin-
cic. Risk-taking and the media. Risk Analysis: An International Journal,
31(5):699–705, 2011.

[50] Seth Flaxman, Sharad Goel, and Justin M Rao. Filter bubbles, echo cham-
bers, and online news consumption. Public opinion quarterly, 80(S1):298–
320, 2016.

175

[51] Peter Forbes and Mu Zhu. Content-boosted matrix factorization for rec-
ommender systems: experiments with recipe recommendation. In Pro-
ceedings of the fifth ACM conference on Recommender systems, pages 261–264.
ACM, 2011.

[52] C Ailie Fraser, Mira Dontcheva, Holger Winnemoeller, and Scott Klem-
mer. Discoveryspace: Crowdsourced suggestions onboard novices in
complex software. In Proceedings of the 19th ACM Conference on Computer
Supported Cooperative Work and Social Computing Companion, pages 29–32.
ACM, 2016.

[53] Jill Freyne and Shlomo Berkovsky. Intelligent food planning: personal-
ized recipe recommendation. In Proceedings of the 15th international confer-
ence on Intelligent user interfaces, pages 321–324. ACM, 2010.

[54] Marguerite Fuller, Manos Tsagkias, Eamonn Newman, Jana Besser,
Martha Larson, Gareth JF Jones, and Maarten de Rijke. Using term clouds
to represent segment-level semantic content of podcasts. 2008.

[55] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars
Schmidt-Thieme. Mymedialite: A free recommender system library. In
Proceedings of the fifth ACM conference on Recommender systems, pages 305–
308. ACM, 2011.

[56] Gijs Geleijnse, Peggy Nachtigall, Pim van Kaam, and Luciënne Wijger-
gangs. A personalized recipe advice system to promote healthful choices.
In Proceedings of the 16th international conference on Intelligent user interfaces,
pages 437–438. ACM, 2011.

[57] Nadav Golbandi, Yehuda Koren, and Ronny Lempel. Adaptive bootstrap-
ping of recommender systems using decision trees. In WSDM, 2011.

[58] Peter M Gollwitzer. Implementation intentions: strong effects of simple
plans. American psychologist, 54(7):493, 1999.

[59] Masataka Goto and Jun Ogata. Podcastle: Recent advances of a spoken
document retrieval service improved by anonymous user contributions.
In Twelfth Annual Conference of the International Speech Communication As-
sociation, 2011.

[60] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan
Bhamidipati, Jaikit Savla, Varun Bhagwan, and Doug Sharp. E-commerce

176

in your inbox: Product recommendations at scale. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1809–1818. ACM, 2015.

[61] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. Librec: A java
library for recommender systems. In UMAP Workshops, 2015.

[62] Ido Guy, Naama Zwerdling, David Carmel, Inbal Ronen, Erel Uziel, Sivan
Yogev, and Shila Ofek-Koifman. Personalized recommendation of social
software items based on social relations. In Proceedings of the third ACM
conference on Recommender systems, pages 53–60. ACM, 2009.

[63] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel.
Social media recommendation based on people and tags. In Proceedings of
the 33rd international ACM SIGIR conference on Research and development in
information retrieval, pages 194–201. ACM, 2010.

[64] Morgan Harvey, Bernd Ludwig, and David Elsweiler. You are what you
eat: Learning user tastes for rating prediction. In International Sympo-
sium on String Processing and Information Retrieval, pages 153–164. Springer,
2013.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

[66] Ruining He and Julian McAuley. Ups and downs: Modeling the vi-
sual evolution of fashion trends with one-class collaborative filtering. In
Proceedings of the 25th International Conference on World Wide Web, pages
507–517. International World Wide Web Conferences Steering Committee,
2016.

[67] Ruining He and Julian McAuley. Vbpr: Visual bayesian personalized
ranking from implicit feedback. In AAAI, pages 144–150, 2016.

[68] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-
Seng Chua. Neural collaborative filtering. In Proceedings of the 26th Inter-
national Conference on World Wide Web, pages 173–182. International World
Wide Web Conferences Steering Committee, 2017.

[69] Ye He, Chang Xu, Neha Khanna, Carol J Boushey, and Edward J Delp.
Food image analysis: Segmentation, identification and weight estima-

177

tion. In Multimedia and Expo (ICME), 2013 IEEE International Conference
on, pages 1–6. IEEE, 2013.

[70] Kartik Hosanagar, Daniel Fleder, Dokyun Lee, and Andreas Buja. Will the
global village fracture into tribes? recommender systems and their effects
on consumer fragmentation. Management Science, 60(4):805–823, 2013.

[71] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie,
and Deborah Estrin. Collaborative metric learning. In Proceedings of the
26th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2017.

[72] Cheng-Kang Hsieh, Longqi Yang, Honghao Wei, Mor Naaman, and Deb-
orah Estrin. Immersive recommendation: News and event recommenda-
tions using personal digital traces. In Proceedings of the 25th International
Conference on World Wide Web, pages 51–62. International World Wide Web
Conferences Steering Committee, 2016.

[73] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, pages 263–272. Ieee, 2008.

[74] Nicolas Hug. Surprise, a Python library for recommender systems. http:
//surpriselib.com, 2017.

[75] Jay G Hull, Ana M Draghici, and James D Sargent. A longitudinal study
of risk-glorifying video games and reckless driving. Psychology of Popular
Media Culture, 1(4):244, 2012.

[76] Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep learning. Book
in preparation for MIT Press, 2016.

[77] Michael Inzlicht, Brandon J Schmeichel, and C Neil Macrae. Why self-
control seems (but may not be) limited. Trends in cognitive sciences,
18(3):127–133, 2014.

[78] Dietmar Jannach, Paul Resnick, Alexander Tuzhilin, and Markus Zanker.
Recommender systems-beyond matrix completion. Communications of the
ACM, 59(11):94–102, 2016.

[79] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-

178

http://surpriselib.com
http://surpriselib.com

volutional architecture for fast feature embedding. In Proceedings of the
ACM International Conference on Multimedia, pages 675–678. ACM, 2014.

[80] T. Joachims and A. Swaminathan. Tutorial on counterfactual evaluation
and learning for search, recommendation and ad placement. In ACM Con-
ference on Research and Development in Information Retrieval (SIGIR), pages
1199–1201, 2016.

[81] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM In-
ternational Conference on Web Search and Data Mining, pages 781–789. ACM,
2017.

[82] Jie Kang, Kyle Condiff, Shuo Chang, Joseph A Konstan, Loren Terveen,
and F Maxwell Harper. Understanding how people use natural language
to ask for recommendations. In Proceedings of the Eleventh ACM Conference
on Recommender Systems, pages 229–237. ACM, 2017.

[83] Yoshiyuki Kawano and Keiji Yanai. Food image recognition with deep
convolutional features. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct Publication,
pages 589–593. ACM, 2014.

[84] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[85] Keigo Kitamura, Toshihiko Yamasaki, and Kiyoharu Aizawa. Foodlog:
capture, analysis and retrieval of personal food images via web. In Pro-
ceedings of the ACM multimedia 2009 workshop on Multimedia for cooking and
eating activities, pages 23–30. ACM, 2009.

[86] Robert C Klesges, Linda H Eck, and JoAnne W Ray. Who underreports di-
etary intake in a dietary recall? evidence from the second national health
and nutrition examination survey. Journal of consulting and clinical psychol-
ogy, 63(3):438, 1995.

[87] Bart P Knijnenburg, Saadhika Sivakumar, and Daricia Wilkinson. Rec-
ommender systems for self-actualization. In Proceedings of the 10th ACM
Conference on Recommender Systems, pages 11–14. ACM, 2016.

[88] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M
Henne. Controlled experiments on the web: survey and practical guide.
Data mining and knowledge discovery, 18(1):140–181, 2009.

179

[89] Yehuda Koren. Collaborative filtering with temporal dynamics. Commu-
nications of the ACM, 53(4):89–97, 2010.

[90] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization tech-
niques for recommender systems. Computer, 42(8):30–37, 2009.

[91] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[92] Mounia Lalmas and Liangjie Hong. Tutorial on metrics of user engage-
ment: Applications to news, search and e-commerce. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining,
pages 781–782. ACM, 2018.

[93] Quoc V Le and Tomas Mikolov. Distributed representations of sentences
and documents. In ICML, volume 14, pages 1188–1196, 2014.

[94] Angela R Lebbon and Dene T Hurley. The effects of workplace leisure
behavior on work-related behavior. Journal of Behavioral Studies in Business,
6:1, 2013.

[95] Uichin Lee, Zhenyu Liu, and Junghoo Cho. Automatic identification of
user goals in web search. In Proceedings of the 14th international conference
on World Wide Web, pages 391–400. ACM, 2005.

[96] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased of-
fline evaluation of contextual-bandit-based news article recommendation
algorithms. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 297–306. ACM, 2011.

[97] Wei Li, Justin Matejka, Tovi Grossman, Joseph A Konstan, and George
Fitzmaurice. Design and evaluation of a command recommendation sys-
tem for software applications. ACM Transactions on Computer-Human In-
teraction (TOCHI), 18(2):6, 2011.

[98] Daryl Lim, Julian McAuley, and Gert Lanckriet. Top-n recommendation
with missing implicit feedback. In Proceedings of the 9th ACM Conference
on Recommender Systems, pages 309–312. ACM, 2015.

[99] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommen-

180

dations: Item-to-item collaborative filtering. IEEE Internet computing,
7(1):76–80, 2003.

[100] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for
large scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[101] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[102] Leonard A Marascuilo and Joel R Levin. Appropriate post hoc compar-
isons for interaction and nested hypotheses in analysis of variance de-
signs: The elimination of type iv errors. American Educational Research
Journal, 7(3):397–421, 1970.

[103] Benjamin M Marlin and Richard S Zemel. Collaborative prediction and
ranking with non-random missing data. In Proceedings of the third ACM
conference on Recommender systems, pages 5–12. ACM, 2009.

[104] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. Commu-
nitycommands: command recommendations for software applications. In
Proceedings of the 22nd annual ACM symposium on User interface software and
technology, pages 193–202. ACM, 2009.

[105] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of
substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794. ACM, 2015.

[106] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van
Den Hengel. Image-based recommendations on styles and substitutes.
In Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 43–52. ACM, 2015.

[107] Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex
Gorban, Nathan Silberman, Sergio Guadarrama, George Papandreou,
Jonathan Huang, and Kevin P Murphy. Im2calories: towards an auto-
mated mobile vision food diary. In ICCV, pages 1233–1241, 2015.

[108] T Mikolov and J Dean. Distributed representations of words and phrases
and their compositionality. Advances in neural information processing sys-
tems, 2013.

181

[109] Katherine L Milkman, Todd Rogers, and Max H Bazerman. Harnessing
our inner angels and demons: What we have learned about want/should
conflicts and how that knowledge can help us reduce short-sighted deci-
sion making. Perspectives on Psychological Science, 3(4):324–338, 2008.

[110] Junta Mizuno, Jun Ogata, and Masataka Goto. A similar content retrieval
method for podcast episodes. In Spoken Language Technology Workshop,
2008. SLT 2008. IEEE. IEEE, 2008.

[111] Kher Hui Ng, Victoria Shipp, Richard Mortier, Steve Benford, Martin
Flintham, and Tom Rodden. Understanding food consumption lifecycles
using wearable cameras. Personal and Ubiquitous Computing, 19(7):1183–
1195, 2015.

[112] Tien T Nguyen, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and
Joseph A Konstan. Exploring the filter bubble: the effect of using recom-
mender systems on content diversity. In Proceedings of the 23rd international
conference on World wide web, pages 677–686. ACM, 2014.

[113] Jon Noronha, Eric Hysen, Haoqi Zhang, and Krzysztof Z Gajos. Platem-
ate: crowdsourcing nutritional analysis from food photographs. In UIST,
pages 1–12. ACM, 2011.

[114] Nutrino. Nutrino. http://nutrino.co/, 2016.

[115] Jun Ogata and Masataka Goto. Podcastle: Collaborative training of acous-
tic models on the basis of wisdom of crowds for podcast transcription. In
Tenth Annual Conference of the International Speech Communication Associa-
tion, 2009.

[116] Eli Pariser. The filter bubble: How the new personalized web is changing what
we read and how we think. Penguin, 2011.

[117] Seung-Taek Park and Wei Chu. Pairwise preference regression for cold-
start recommendation. In Proceedings of the third ACM conference on Recom-
mender systems, pages 21–28. ACM, 2009.

[118] Slav Petrov et al. Syntaxnet. https://github.com/tensorflow/
models/tree/master/syntaxnet, 2016.

[119] István Pilászy and Domonkos Tikk. Recommending new movies: even

182

http://nutrino.co/
https://github.com/tensorflow/models/tree/master/syntaxnet
https://github.com/tensorflow/models/tree/master/syntaxnet

a few ratings are more valuable than metadata. In Proceedings of the third
ACM conference on Recommender systems, pages 93–100. ACM, 2009.

[120] PlateJoy. Custom meal plans & meal planning recipes — platejoy. https:
//www.platejoy.com/, 2016.

[121] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K Lam, Sean M
McNee, Joseph A Konstan, and John Riedl. Getting to know you: learning
new user preferences in recommender systems. In ACM IUI, 2002.

[122] Ali Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
Cnn features off-the-shelf: an astounding baseline for recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 806–813, 2014.

[123] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learn-
ing for item recommendation from implicit feedback. In Proceedings of
the 7th ACM international conference on Web search and data mining, pages
273–282. ACM, 2014.

[124] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feed-
back. In Proceedings of the twenty-fifth conference on uncertainty in artificial
intelligence, pages 452–461. AUAI Press, 2009.

[125] Edison Research. The podcast consumer 2017, 2017.

[126] William W Ronan, Gary P Latham, and SB Kinne. Effects of goal setting
and supervision on worker behavior in an industrial situation. journal of
Applied Psychology, 58(3):302, 1973.

[127] Daniel E Rose and Danny Levinson. Understanding user goals in web
search. In Proceedings of the 13th international conference on World Wide Web,
pages 13–19. ACM, 2004.

[128] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive modeling, 5(3):1,
1988.

[129] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factoriza-
tion. In NIPS, 2007.

183

https://www.platejoy.com/
https://www.platejoy.com/

[130] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pen-
nock. Methods and metrics for cold-start recommendations. In Proceed-
ings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 253–260. ACM, 2002.

[131] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chan-
dak, and Thorsten Joachims. Recommendations as treatments: Debiasing
learning and evaluation. In International Conference on Machine Learning,
pages 1670–1679, 2016.

[132] Patrick Shafto and Olfa Nasraoui. Human-recommender systems: From
benchmark data to benchmark cognitive models. In Proceedings of the 10th
ACM Conference on Recommender Systems, pages 127–130. ACM, 2016.

[133] Amit Sharma, Jake M Hofman, and Duncan J Watts. Estimating the causal
impact of recommendation systems from observational data. In Proceed-
ings of the Sixteenth ACM Conference on Economics and Computation, pages
453–470. ACM, 2015.

[134] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future challenges.
ACM Computing Surveys (CSUR), 47(1):3, 2014.

[135] Shopwell. Innit - your food. simplified & solved. https://www.innit.
com/shopwell/, 2016.

[136] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[137] Apache Spark. Mllib. https://spark.apache.org/mllib/, 2017.

[138] Harald Steck. Training and testing of recommender systems on data miss-
ing not at random. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 713–722. ACM,
2010.

[139] Harald Steck. Item popularity and recommendation accuracy. In Pro-
ceedings of the fifth ACM conference on Recommender systems, pages 125–132.
ACM, 2011.

[140] Harald Steck. Evaluation of recommendations: rating-prediction and

184

https://www.innit.com/shopwell/
https://www.innit.com/shopwell/
https://spark.apache.org/mllib/

ranking. In Proceedings of the 7th ACM conference on Recommender systems,
pages 213–220. ACM, 2013.

[141] Ana-Andreea Stoica, Christopher Riederer, and Augustin Chaintreau. Al-
gorithmic glass ceiling in social networks: The effects of social recommen-
dations on network diversity. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, pages 923–932. International World Wide
Web Conferences Steering Committee, 2018.

[142] Jessica Su, Aneesh Sharma, and Sharad Goel. The effect of recommenda-
tions on network structure. In Proceedings of the 25th international conference
on World Wide Web, pages 1157–1167. International World Wide Web Con-
ferences Steering Committee, 2016.

[143] Kyoko Sudo, Kazuhiko Murasaki, Jun Shimamura, and Yukinobu
Taniguchi. Estimating nutritional value from food images based on se-
mantic segmentation. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct Publication,
pages 571–576. ACM, 2014.

[144] Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy Lebanon, and
Hongyuan Zha. Learning multiple-question decision trees for cold-start
recommendation. In WSDM, 2013.

[145] Martin Svensson, Kristina Höök, and Rickard Cöster. Designing and eval-
uating kalas: A social navigation system for food recipes. ACM Transac-
tions on Computer-Human Interaction (TOCHI), 12(3):374–400, 2005.

[146] Adith Swaminathan and Thorsten Joachims. Counterfactual risk mini-
mization: Learning from logged bandit feedback. In International Confer-
ence on Machine Learning, pages 814–823, 2015.

[147] Adith Swaminathan and Thorsten Joachims. The self-normalized estima-
tor for counterfactual learning. In Advances in Neural Information Processing
Systems, pages 3231–3239, 2015.

[148] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro
Dudik, John Langford, Damien Jose, and Imed Zitouni. Off-policy evalua-
tion for slate recommendation. In Advances in Neural Information Processing
Systems, pages 3635–3645, 2017.

[149] Liang Tang, Bee-Chung Chen, Deepak Agarwal, and Bo Long. An em-
pirical study on recommendation with multiple types of feedback. In

185

Proceedings of the 22th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.

[150] Jaime Teevan, Susan T Dumais, and Daniel J Liebling. To personalize
or not to personalize: modeling queries with variation in user intent. In
Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 163–170. ACM, 2008.

[151] Choon Hui Teo, Houssam Nassif, Daniel Hill, Sriram Srinivasan, Mitchell
Goodman, Vijai Mohan, and SVN Vishwanathan. Adaptive, personalized
diversity for visual discovery. In Proceedings of the 10th ACM Conference on
Recommender Systems, pages 35–38. ACM, 2016.

[152] Edison Thomaz, Aman Parnami, Irfan Essa, and Gregory D Abowd. Fea-
sibility of identifying eating moments from first-person images leverag-
ing human computation. In Proceedings of the 4th International SenseCam &
Pervasive Imaging Conference, pages 26–33. ACM, 2013.

[153] Sabina Tomkins, Steven Isley, Ben London, and Lise Getoor. Sustainabil-
ity at scale: towards bridging the intention-behavior gap with sustainable
recommendations. In Proceedings of the 12th ACM Conference on Recom-
mender Systems, pages 214–218. ACM, 2018.

[154] Christoph Trattner and David Elsweiler. Investigating the healthiness
of internet-sourced recipes: implications for meal planning and recom-
mender systems. In Proceedings of the 26th international conference on
world wide web, pages 489–498. International World Wide Web Conferences
Steering Committee, 2017.

[155] Manos Tsagkias, Martha Larson, and Maarten De Rijke. Predicting pod-
cast preference: An analysis framework and its application. Journal of the
American Society for information Science and Technology, 61(2):374–391, 2010.

[156] Gabrielle M Turner-McGrievy, Elina E Helander, Kirsikka Kaipainen,
Jose Maria Perez-Macias, and Ilkka Korhonen. The use of crowdsourc-
ing for dietary self-monitoring: crowdsourced ratings of food pictures are
comparable to ratings by trained observers. Journal of the American Medical
Informatics Association, 22(e1):e112–e119, 2015.

[157] Mayumi Ueda, Syungo Asanuma, Yusuke Miyawaki, and Shinsuke Naka-
jima. Recipe recommendation method by considering the user’s prefer-
ence and ingredient quantity of target recipe. In Proceedings of the Interna-
tional MultiConference of Engineers and Computer Scientists, volume 1, 2014.

186

[158] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep
content-based music recommendation. In Advances in neural information
processing systems, pages 2643–2651, 2013.

[159] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[160] Youri van Pinxteren, Gijs Geleijnse, and Paul Kamsteeg. Deriving a recipe
similarity measure for recommending healthful meals. In Proceedings of
the 16th international conference on Intelligent user interfaces, pages 105–114.
ACM, 2011.

[161] Chong Wang and David M Blei. Collaborative topic modeling for recom-
mending scientific articles. In Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 448–456.
ACM, 2011.

[162] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learn-
ing for recommender systems. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 1235–
1244. ACM, 2015.

[163] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image an-
notation: learning to rank with joint word-image embeddings. Machine
learning, 81(1):21–35, 2010.

[164] Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to
large vocabulary image annotation. In IJCAI, volume 11, pages 2764–2770,
2011.

[165] Jason Weston, Hector Yee, and Ron J Weiss. Learning to rank recommen-
dations with the k-order statistic loss. In Proceedings of the 7th ACM confer-
ence on Recommender systems, pages 245–248. ACM, 2013.

[166] Ryen W White and Steven M Drucker. Investigating behavioral variability
in web search. In Proceedings of the 16th international conference on World
Wide Web, pages 21–30. ACM, 2007.

[167] Jacob O Wobbrock, Leah Findlater, Darren Gergle, and James J Higgins.
The aligned rank transform for nonparametric factorial analyses using
only anova procedures. In Proceedings of the SIGCHI conference on human
factors in computing systems, pages 143–146. ACM, 2011.

187

[168] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How
Jing. Recurrent recommender networks. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pages 495–503.
ACM, 2017.

[169] Yahoo! Yahoo! Webscope dataset ydata-ymusic-rating-study-v1, 2006.

[170] Ming Yan, Jitao Sang, and Changsheng Xu. Mining cross-network as-
sociation for youtube video promotion. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 557–566. ACM, 2014.

[171] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang
Hsieh, and Deborah Estrin. Openrec: A modular framework for ex-
tensible and adaptable recommendation algorithms. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining,
pages 664–672. ACM, 2018.

[172] Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and
Deborah Estrin. Unbiased offline recommender evaluation for missing-
not-at-random implicit feedback. In Proceedings of the 12th ACM Conference
on Recommender Systems, pages 279–287. ACM, 2018.

[173] Longqi Yang, Yin Cui, Fan Zhang, John P Pollak, Serge Belongie, and Deb-
orah Estrin. Plateclick: Bootstrapping food preferences through an adap-
tive visual interface. In Proceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management, pages 183–192. ACM, 2015.

[174] Longqi Yang, Chen Fang, Hailin Jin, Matthew D Hoffman, and Deborah
Estrin. Personalizing software and web services by integrating unstruc-
tured application usage traces. In Proceedings of the 26th International Con-
ference on World Wide Web Companion, pages 485–493. International World
Wide Web Conferences Steering Committee, 2017.

[175] Longqi Yang, Chen Fang, Hailin Jin, Matthew D Hoffman, and Deborah
Estrin. Characterizing user skills from application usage traces with hi-
erarchical attention recurrent networks. ACM Transactions on Intelligent
Systems and Technology (TIST), 9(6):68, 2018.

[176] Longqi Yang, Cheng-Kang Hsieh, and Deborah Estrin. Beyond classifica-
tion: Latent user interests profiling from visual contents analysis. In 2015
IEEE International Conference on Data Mining Workshop (ICDMW), pages
1410–1416. IEEE, 2015.

188

[177] Longqi Yang, Cheng-Kang Hsieh, Hongjian Yang, John P Pollak, Nicola
Dell, Serge Belongie, Curtis Cole, and Deborah Estrin. Yum-me: a per-
sonalized nutrient-based meal recommender system. ACM Transactions
on Information Systems (TOIS), 36(1):7, 2017.

[178] Longqi Yang, Michael Sobolev, Christina Tsangouri, and Deborah Estrin.
Understanding user interactions with podcast recommendations deliv-
ered via voice. In Proceedings of the 12th ACM Conference on Recommender
Systems, pages 190–194. ACM, 2018.

[179] Longqi Yang, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne,
Christina Tsangouri, Nicola Dell, Mor Naaman, and Deborah Estrin. How
intention informed recommendations modulate choices: A field study of
spokenword content. In Proceedings of the 2019 World Wide Web Conference
on World Wide Web. International World Wide Web Conferences Steering
Committee, 2019.

[180] Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and
Deborah Estrin. More than just words: Modeling non-textual characteris-
tics of podcasts. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pages 276–284. ACM, 2019.

[181] Mike Yeomans, Anuj Shah, Sendhil Mullainathan, and Jon Kleinberg.
Making sense of recommendations. Preprint at http://scholar. harvard.
edu/files/sendhil/files/recommenders55 01. pdf, 2016.

[182] Yummly. Yummly — recipe api & food api. https://developer.
yummly.com/, 2016.

[183] Fuzheng Zhang, Nicholas Jing Yuan, Kai Zheng, Defu Lian, Xing Xie, and
Yong Rui. Exploiting dining preference for restaurant recommendation.
In Proceedings of the 25th International Conference on World Wide Web, pages
725–735. International World Wide Web Conferences Steering Committee,
2016.

[184] Xi Zhang, Jian Cheng, Shuang Qiu, Guibo Zhu, and Hanqing Lu. Dualds:
A dual discriminative rating elicitation framework for cold start recom-
mendation. Knowledge-Based Systems, 2015.

[185] Xiaoying Zhang, Junzhou Zhao, and John Lui. Modeling the assimilation-
contrast effects in online product rating systems: Debiasing and recom-
mendations. In Proceedings of the Eleventh ACM Conference on Recommender
Systems, pages 98–106. ACM, 2017.

189

https://developer.yummly.com/
https://developer.yummly.com/

[186] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Fa-
cial landmark detection by deep multi-task learning. In Computer Vision–
ECCV 2014, pages 94–108. Springer, 2014.

[187] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Schölkopf. Learning with local and global consistency. NIPS,
2004.

[188] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. Functional matrix
factorizations for cold-start recommendation. In SIGIR, 2011.

[189] Zipongo. Personalizing food recommendations with data
science. http://blog.zipongo.com/blog/2015/8/11/
personalizing-food-recommendations-with-data-science,
2015.

[190] Zipongo. Corporate nutrition programs - manage nutrition with zipongo.
https://meetzipongo.com/, 2016.

190

http://blog.zipongo.com/blog/2015/8/11/personalizing-food-recommendations-with-data-science
http://blog.zipongo.com/blog/2015/8/11/personalizing-food-recommendations-with-data-science
https://meetzipongo.com/

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Debiasing implicit feedback
	Leveraging richer data sources
	Interactive preference learning
	Generalization of recommendation algorithms
	Thesis organization

	Debiasing implicit feedback: unbiased recommender evaluation
	Introduction
	Related work
	Debiasing the evaluation of ExplicitRec
	ImplicitRec and evaluation
	Counterfactual evaluation

	Unbiased recommender evaluation for implicit feedback
	Average-over-all (AOA) evaluator
	Unbiased evaluator
	Estimating propensity scores

	Experiments with biased feedback and the evaluator
	Experimental setup
	Investigating popularity bias
	Exploring the power-law exponent
	Understanding the unbiased evaluator

	Evaluating debiasing performance
	Experimental setup
	Results

	Conclusions and discussions

	Leveraging richer data sources: personalized creative applications incorporating unstructured software usage traces
	Introduction
	Related work
	Distributed representation learning
	User modeling in online social platforms
	Software user and command modeling

	Dataset
	Software user representation
	util2vec framework
	Implementation details
	User profiling performance

	Applications
	Software user tagging
	Cold-start art project recommendation
	Inspiration engine

	Conclusions

	Interactive preference learning: a personalized nutrient-based recipe recommendation system
	Introduction
	Related work
	Healthy meal recommender system
	Cold-start problem and preference elicitation
	Pairwise algorithms for recommendation
	Food image analysis

	Yum-me system design
	Large scale food database
	User survey
	Adaptive visual interface

	Online learning framework
	User state update
	Images selection

	FoodDist: food image embedding
	Learning with classification
	Metric learning
	Multitask learning

	Evaluation
	User testing for the online learning framework
	Offline benchmarking for FoodDist
	End-to-end user testing

	Discussions
	Limitations of the evaluations
	Limitations of Yum-me in recommending healthy meals
	Yum-me for real world dietary applications
	FoodDist for food image analysis tasks

	Conclusions

	Interactive preference learning: an intention-informed spoken word content recommendation system
	Introduction
	Related work
	Effects of recommendations
	User intentions
	Recommendations beyond accuracy
	Web spoken word content

	Study design
	Onboarding (ONB)
	Field study (FIE)
	Post-study survey
	Participant recruitment

	Study results
	General usage patterns

	Qualitative usage results
	Choices related to topic-wise intentions
	Exploratory choices
	User satisfaction

	Implications and discussions
	Employing planning and intentions
	Encouraging exploration
	Understanding user satisfaction
	Optimizing for multiple objectives
	Limitations of intention-agnostic metrics

	Conclusions

	Generalization of recommendation algorithms
	Introduction
	Evolution of recommender systems
	Pure collaborative filtering models
	Hybrid and content-ware models

	Related frameworks
	OpenRec framework
	Recommenders
	Modules
	Utility functions
	Generalization

	Experiments and use cases
	Validity: reproducing monolithic implementations
	Efficiency: quick prototyping and experimentation
	Extensibility: developing new algorithms via extension

	Conclusions

	Future work
	Bibliography

