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ABSTRACT
Modeling user behavior from unstructured software log-trace data
is critical in providing personalized service (e.g., cross-platform
recommendation). Existing user modeling approaches cannot well
handle the long-term temporal information in log data, or produce
semantically meaningful results for interpreting user logs. To ad-
dress these challenges, we propose a Log2Intent framework for
interpretable user modeling in this paper. Log2Intent adopts a deep
sequential modeling framework that contains a temporal encoder,
a semantic encoder and a log action decoder, and it fully captures
the long-term temporal information in user sessions. Moreover, to
bridge the semantic gap between log-trace data and human lan-
guage, a recurrent semantics memory unit (RSMU) is proposed to
encode the annotation sentences from an auxiliary software tutorial
dataset, and the output of RSMU is fed into the semantic encoder
of Log2Intent. Comprehensive experiments on a real-world Photo-
shop log-trace dataset with an auxiliary Photoshop tutorial dataset
demonstrate the effectiveness of the proposed Log2Intent frame-
work over the state-of-the-art log-trace user modeling method in
three different tasks, including log annotation retrieval, user inter-
est detection and user next action prediction.
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1 INTRODUCTION
User modeling [11, 27, 40] enables personalized experience of soft-
ware and web service, with a wide range of applications in recom-
mender system, personalized social web, online advertising, email
marketing, intelligent user interfaces, etc. Most existing user mod-
eling approaches have benefited largely from the structured user
behavior data, such as texts, images, ratings, etc. For example, col-
laborative filtering methods decompose the incomplete user-movie
rating matrix into latent factors and predict whether a user will be
interested in a movie she/he hasn’t watched before; email market-
ing systems achieve behavioral targeted advertising, by segmenting
users into multiple groups based on the structured data like de-
mographics and online purchase history. However, user modeling
from unstructured user behavior data has not been extensively stud-
ied before. One representative type of unstructured user behavior
data is the software log-trace data, which can be observed in many
complex software, such as the graphic design software Photoshop,
computer-aided design and manufacturing software CAD/CAM,
enterprise resource planning software SAP ERP, etc. This paper
focuses on modeling user behaviors, predicting and interpreting
user intents from the unstructured software log-trace data, in order
to improve the user experience.

The major challenges in modeling the unstructured user behav-
ior log-trace data are two-fold. First, how to encode the long-term
temporal information to user modeling? Util2Vec [38] is the most
relevant work to ours, which extracts discriminative embeddings
from the log-trace data. However, it neglects to model the long-term
temporal context in user logs. We propose to use deep sequential
modeling based on recurrent neural networks (RNN) to address this
issue. Although many RNN based models have been introduced
to sequential recommendation [14], they haven’t been applied to
analyzing software log-trace date yet. Second, how to achieve inter-
pretable results for user modeling? As the software log-trace data are
usually unstructured and hard to understand, there is a big semantic
gap between the log data and human language. To bridge such a
semantic gap, we propose to leverage auxiliary text datasets (e.g.,
software tutorials) and further interpret user logs in a semantically
meaningful way.

In this paper, we propose a Log2Intent framework for inter-
pretable user modeling. By formulating the user log modeling as
a representation learning problem, our Log2Intent framework ex-
tracts low-dimensional user embedding from unstructured software
log-trace data and auxiliary tutorial data. In particular, the deep
sequential modeling is employed to capture the long-term temporal
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information, in which a memory unit is designed to exploit the
auxiliary tutorial data and generate interpretable results. The se-
quential modeling part accounts for the temporal information from
each user session, which is implemented by a temporal encoder, a
semantic encoder, and a log action decoder. The temporal encoder
models the contextual information between log action sequences.
Inspired by the end-to-end MemNet [29] and the recurrent mem-
ory network [31], we propose a recurrent semantics memory unit
(RSMU) that captures the input from tutorial data. Then, the se-
mantic encoder fuses the memory output of RSMU and the hidden
state of temporal encoder. Finally, the log action decoder is fed with
the previous action and it predicts the next action conditioning on
the last hidden state. The framework of Log2Intent is shown in
Fig. 2. Extensive experiments on a real-world Photoshop log-trace
dataset with an auxiliary Photoshop tutorial dataset demonstrate
the effectiveness of our framework in the following three tasks: (1)
interpreting log-trace data by retrieving relevant annotations from
tutorials; (2) exploring user interests by predicting the associated
tags; (3) predicting the next user action. As the proposed Log2Intent
framework is indeed a general solution to sequential modeling of
log data, it could be applied to many other log analysis tasks (e.g.,
web browsing analytics) beyond the software log-trace data.
Contributions. In summary, we highlight the major contributions
of this work as follows.

• We propose the Log2Intent framework for user behavior
modeling, by developing a novel deep sequential model with
a temporal encoder, a semantic encoder and a log action
decoder network.
• We design a recurrent semantics memory unit (RSMU) to dy-
namically capture the semantic information provided by an
auxiliary tutorial dataset, conditioning on temporal context.
The semantics attention mechanism inside RSMU enables
our model to interpret the user log data with the attended
annotations (i.e. memory slots) from tutorials.
• We perform comprehensive evaluations of our model and
baselines on the real-world software log-trace dataset. Our
Log2Intent approach obtains remarkable improvements over
baselines in three tasks including log annotation retrieval,
user interest detection and next action prediction.

2 DATASET
We provide a general method that is applicable to any software
as long as it records 1) user log trace and has 2) text tutorials. In
this paper, we implement our idea upon the Adobe Photoshop
platform with following reasons. First, Photoshop is one of the
most representative software for users to complete complex and
long-period tasks, which provides plenty of long action sequences,
thus sufficient temporal context, to our study. Second, there are
many online Photoshop tutorials that allow us to obtain text annota-
tion/explanation for action sequence. Third, Photoshop users cover
a wide range of occupations such as graphic designer, advertiser
and artist, who share different user interests and professional habits.
Hence, it meets the assumption of our approach for personalized
learning. We give the details of our data collection as follows.

User-Log Dataset. Photoshop software records the actions con-
ducted in the application for all the users who agree with the usage

free_transform

Press Ctrl+T (Win) / 
Command+T (Mac) to 
access Free Transform with 
the keyboard shortcut:  Go  
to Edit > Free Transform.

duplicate_image

Copy The Selection To A 
New Layer Press Ctrl+J / 
Command+J to quickly copy 
the couple to their own layer 
in the Layers panel.

gradient_tool

Then, with your mouse 
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for the gradient.
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Figure 1: Illustration of action/annotation sequence in the
tutorial dataset, where each user action is described by an
annotation sentence.

reporting. These user actions include the buttons clicked, tools
selected and features applied, such as [open], [undo], [move]; [hor-
izontal_type_tool], [brush_tool], [stamp_pickup_tool]; [deselect],
[clone_stamp] and [stepbackward]. Hence, the log-trace record is
a sequence of user actions. We collected such log sequence data
from U.S. Photoshop users in February 2018, resulting in 611, 628
users with totally 1, 865, 636 sessions of around 0.41 billion actions.
Each session is corresponding to user activity per time, and has an
average length of 220 actions. All these logs share with a vocabulary
of 940 unique actions after filtering out the low frequency ones.

Tutorial Dataset. We use the tutorial dataset [37] collected from
2, 022 online Photoshop tutorials. After preprocessing this dataset
with the same vocabulary in our User-Log dataset, we remain 1, 781
tutorials of 49, 763 actions covering 426 high frequency actions in
the vocabulary. Each action is corresponding to one human an-
notation per tutorial. Thus, we also get 49, 763 sentences with a
vocabulary of 11, 223 words. It is worth noting that, the same soft-
ware action is usually annotated by different sentences according
to different action context. One tutorial example is shown in Fig. 1,
where each tutorial contains two sequences: 1) software actions
performed in this tutorial and 2) a sequence of annotation sentences
along with time steps for each action. We collect all the annotated
sentences for each action as its specific auxiliary knowledge.

3 METHODOLOGY
3.1 Problem Formulation
Software log-trace data provide large amount of personalized in-
formation collected from daily life, which is useful to enrich user
profile and describe user behavior. In this work, we target to mine
user’s intent from log data. Specifically, we denote {u} as a set of
users, each of which has a long log-trace history consisting of a
sequence of sessions, i.e., u ← [s1, s2, . . . , sN ], where si represents
the i-th session and N denotes the number of user sessions. Each
session is a sequential data denoted by si = [ai1,a

i
2, . . . ,a

i
T ], where

ait represents the t-th software action taken by user u in the i-th
session. Let T be the length of si and Va be the vocabulary for all
the unique software actions. We focus on the following questions.

(1) Can we interpret log-trace data in a human readable way?
(2) Can we learn a compact user representation from log history?
(3) Can we predict next user action by giving the previous ones?

To address the above challenges, we propose a Log2Intent model
to incorporate semantics memory units into sequence to sequence
learning. Moreover, we leverage auxiliary knowledge to enrich and
interpret the log sequential data. For each user action (i.e., ∀a ∈ Va ),
we collect log annotations from software tutorials as its own se-
mantic “memory” slots. Thus, each action a is corresponding to one
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Figure 2: Illustration of the proposed Log2Intent model. (a) The temporal encoder network models the context information
between action sequence; (b) the semantic encoder fuses thememory output as well as the hidden state in (a) at each time step;
(c) the action decoder works as a “language” model, which is fed with the previous user action and predicts the next action
conditioning on the last hidden state. Each action has its own memory unit (see Fig. 3) and attends to different memory slots
upon the temporal context.

memory unit denoted as M = {mk }k=1...K , wheremk represents
the k-th memory slot and K is the size of a memory unit. The mem-
ory slotmk is a sentence of L words, denoted by [wk

1 , . . . ,w
k
L ]. We

refer toVw as the word vocabulary shared by all the memory units.
Notations. We present the details of our model in the next. For
convenience, we omit the superscript i for different sessions and
actions when no confusion occurs, and always assume a user action
a ∈ Va is corresponding to its own memory unit M without spe-
cific instructions. Moreover, we suppress all the bias vectors in the
projection layer for readability. Vectors and matrices are denoted
as bold lowercase and capital letters, respectively.

3.1.1 Embedding layers. Embedding layer is widely used by recent
deep recurrent neural networks to project discrete variables into
continuous vector space, where the general idea is to adopt an
embedding matrix (i.e., a look-up table) to index input variable.
In our model, we also learn action and memory embeddings to
enable gradient backpropagation for network training. In detail, let
A ∈ R |Va |×da be the embedding matrix for actions, then action at
is represented by

xt = A(at ), (1)

where da represents the dimension for action embedding, 1 ≤ at ≤
|Va | indexes the at -th row in matrix A. In a similar way, we can
also vectorize each memory slot (a sentence) inM . Following [29],
we define two memory look-up tables for addressing and reading
memories, respectively, such as M ∈ R |Vw |×dm and O ∈ R |Vw |×dm ,
where dm refers to the embedding dimension for all the memories.
Then, we represent the memory slotmk by

mk =
∑
l

η(l )M(wk
l ), (2)

ok =
∑
l

η(l )O(wk
l ), (3)

where 1 ≤ l ≤ L indexes the l-th word inmk and η(l ) is a weight
function w.r.t the word position in one sentence as defined in [29].
As can be seen, Eqs. (2-3) give memory embedding as a weighted
sum of word embeddings within the sentencemk , 1 ≤ k ≤ K .

3.2 Session to Session
Log trace is in essence sequential data that contain the temporal
context varying from different tasks and user habits. Hence, it
will be useful to capture the temporal information from each user
session. Inspired by recent deep sequential modeling [19, 30], we
leverage a session to session strategy as si → si+1. Fig. 2 shows the
overall architecture of our model. We develop an encoder-decoder
framework to model the user behaviors, which mainly involves two
encoder networks and one decoder network as follows.

3.2.1 Temporal Encoder. Given one session s = [a1,a2, . . . ,aT ],
we first design a temporal encoder network fenc−T as

ht = fenc−T (xt , ht−1;θenc−T ), (4)

where xt is the action embedding for at ∈ s and θenc−T refers to all
the learnable parameters for fenc−T . By using Eq. (4), we generate a
hidden representation ht for each time step with new arrival action
and previous states. Thus, with such a recurrent model, the entire
session s could be represented by the last hidden sate hT .

Several popular recurrent neural networks (RNNs) can be used
for fenc−T , such as the Long Short-Term Memory (LSTM) [15] and
Gated Recurrent Unit (GRU) [7, 8]. In our model, we adopt GRU as
it empirically has a similar performance to LSTM for log sequence
yet a more simple structure. In detail, GRU is defined by

rt = σ (Wr xt + Ur ht−1),

zt = σ (Wzxt + Uzht−1),

ĥt = tanh(Wxt + U(rt ⊙ ht−1)),

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̄t ,

(5)

where rt and zt respectively represent the reset gate and update
gate, ⊙ denotes the Hadamard product, and ĥt is the candidate state
proposed at each time step. The final hidden state ht emitted at
time t is a linear interpolation between the previous sate ht−1 and
the candidate ĥt . More specifically, let e be our temporal encoder,
we encapsulate the temporal information within ∀s into a single
hidden representation as

hT = e ([x1, x2, . . . , xT ]), (6)



KDD ’19, August 4–8, 2019, Anchorage, AK, USA Z. Tao et al.

where e is parameterized by fenc−T defined in Eq. (4), and θenc−T
thus includes all the GRU parameters in Eq. (5) plus the action
embedding matrix A.

3.2.2 Semantic Encoder. Our model jointly utilizes two-source in-
formation, i.e., user action sequence from log data and the anno-
tation sentences for each action collected from software tutorials.
However, how to integrate the sentence information into the encod-
ing process is quite challenging, especially when we aim to keep
tracking sentences to obtain the interpretability, which means we
cannot simply merge all the sentences as a semantics view for each
action. To address this challenge, we propose a recurrent semantics
memory unit (RSMU) to dynamically fetch the memory slot (i.e.,
sentence) from each action’s memories. We will introduce more
about RSMU in Section 3.3. Let ct be the output from RSUM for
action at , then we have our semantic encoder function as

h′t = fenc−S (vt , h′t−1;θenc−S ), (7)

where vt = ct + ht , h′t denotes the semantic hidden state at time t ,
and fenc−S is also formulated by GRU with θenc−S including all the
related parameters in the semantics encoding pathway. We employ
fenc−S to build the connection between different RSMUs along with
the time steps, which focuses on modeling the relationship between
different user actions’ memory context. A semantic representation
for session s is obtained by

h′T = e ′([v1, v2, . . . , vT ]), (8)

where e ′ represents the semantic encoder parameterized by fenc−S .

3.2.3 Session Vector. By encoding both the temporal context and
semantic information inside the action sequence, we eventually
deliver a session vector for session si as

hi = д(hT , h′T ), (9)

where д(·, ·) represents a common fusion function such as sum-
mation or concatenation. We refer to hi as the session vector to
session si , 1 ≤ i ≤ N . Our session vector encapsulates the long-
term sequential pattern from user session with the assistance of
tutorial explanation, and therefore it gains the ability to remember
personalized usage habit. In the next, we show how to predict next
user actions upon the last session vector.

3.2.4 Log Action Decoder. Similar to some RNN based language
models [7, 30], we develop our log action decoder by maximizing
the following ordered conditional probabilities:

p (si+1) =
T∏
t=1

p (ai+1
t |a

i+1
t−1, h

i+1
t−1, h

i ), (10)

which means the current action ai+1
t in session si+1 is conditioning

on the previous action ai+1
t−1, previous hidden state hi+1

t−1, as well as
the last session vector hi . Specifically, the hidden state in decoding
process is obtained by

hi+1
t = fdec (x

i+1
t , h

i+1
t−1;θdec ), (11)

where fdec is parameterized by GRU and initialized with hi , i.e.,
hi+1

0 = hi , and θdec represents all the parameters in the decoding
function. The conditional probability is obtained through adding a

… ……

c"Σ
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Figure 3: Illustration for our recurrent semantics memory
unit (RSMU), where each memory slotmk is addressed and
read by M and O, respectively.

projection layer Wa ∈ R
dh×|Va | on the top of fdec followed by a

softmax activation function, which is formulated as

ŷi+1
t = softmax(WT

ah
i+1
t ), (12)

where ŷi+1
t ∈ R |Vw | gives the probability distribution over Vw .

3.3 Recurrent Semantics Memory Unit (RSMU)
The proposed recurrent semantics memory unit (RSMU) inherits
from memory networks [26, 29, 34], and generally has two steps:
1) memory addressing and 2) memory reading. Recall that, our
memory unitM consists of a set of sentences collected from human
annotations for log sequence in the software tutorials. Though one
action is corresponding to a sentence group, it should attend to
different sentences (i.e., memory slots) upon the action context,
which is matched to different hidden states ([h1, . . . , hT ]) in the
temporal encoding process. Thus, we recurrently address and read
the memory unit as follows.

3.3.1 Recurrent Memory Addressing. Fig. 3 shows our RSMU block,
which is inserted between the temporal encoder and semantic en-
coder (see Fig. 2). For each time step, we query the memory unit
with a semantics attention mechanism by

qt = [xt ; ht ], et =WT
qqt , (13)

αk = softmax(eT
t mk ) =

exp(eT
t mk )∑K

k=1 exp(e
T
t mk )

, (14)

where qt is the query vector,Wq ∈ R
(da+dh )×dm projects qt into

the memory embedding space as et , mk represents the memory
embedding given by Eq. (2), 1 ≤ k ≤ K , and αk works as the
attention weights. Note that, we add the action embedding xt into
the query vector, as it helps build a connection between different
software actions and words; on the other hand, ht differs different
sentences upon temporal context.

3.3.2 Recurrent Memory Reading. After obtaining the attentions
weights αk for all the memory slots, we can write the semantic
output for RSMU at each time step by

ct =WT
o

K∑
k=1

αkok , (15)

where ct in essence represents a semantic context vector, andWo ∈

Rdm×dh is used to align the dimension of memory embeddings and
hidden states. It is worth noting that, though different actionsa ∈ Va
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Table 1: Statistics Summary of User-Log Dataset

dataset # users (u) # sessions (s) avg. # session/u avg. # action/s

User-Log-30 519,889 14,354,256 28 29
User-Log-100 454,881 5,018,158 11 82

have their own memory units, all the RSMUs share with the same
parameter, which is denoted as θmem = {M,O,Wq ,Wo }.

3.4 Final Objective
Recall Section 2, we have collected two datasets to train our pro-
posed Log2Intent model, which are (1) the user-log dataset contain-
ing plenty of sessions from user set {u}; and (2) the tutorial dataset
including human annotations for action sequence in all the tutorials.
The user log data provide lots of sessions pairs (si , si+1) to model
the temporal patterns for each user, while tutorial sequences could
supervise RSMU to attend to the corresponding memory slot of
each action with different temporal context. Hence, we formulate
two objectives as follows.

3.4.1 Sequence Loss. Given (si , si+1) from user u, we learn the
session vector hi for si with Eq. (9) and then predicts the following
actions in si+1 conditioning on hi with fdec . Let yi+1

t ∈ R |Vw | be
the one-hot vector of ai+1

t , then we define the sequence loss for
each user u as

Lu = −
∑

s i+1∈u

∑
t

yi+1
t · log ŷi+1

t , 1 ≤ i ≤ N , (16)

where · denotes element-wise product and ŷi+1
t is given by Eq. (12).

3.4.2 Attention Loss. We treat our tutorial dataset as a “special
user” u ′ and focus on modeling its semantic information. Given
∀s ∈ u ′, we have the ground truth sentence annotation for ∀at ∈ s ,
which means we have memory labels y′t ∈ R

K at each time step.
Thus, an attention loss is designed to explicitly guide the RSMU
training by

Lu′ = −
∑
s ∈u′

∑
t

y′t · log ŷ′t , (17)

where y′t is a one-hot vector to index the correct memory slot in
the corresponding memory unit M of at , and ŷ′t is directly given
by the attention weights in Eq. (14), i.e., ŷ′t = [α1, . . . ,αK ]T .

By jointly considering Eq. (16) and Eq. (17), we eventually train
our Log2Intent model by

L =
∑
u
Lu + λLu′ , (18)

where we sum over all the users’ sequence loss and concurrently
optimize the attention loss, and λ > 0 is used to balance the train-
ing frequency between these two parts. To handle large-scale user
log data, we adopt stochastic gradient descent (SGD) optimization
with mini-batch strategy to train our network. Specifically, we up-
date {θenc−T ,θenc−S ,θdec ,θmem } by minimizing Lu ; while only
backpropate the gradient of Lu′ w.r.t {θenc−T ,θenc−S ,θmem }.

4 EXPERIMENT
4.1 Experimental Setting
4.1.1 Datasets. To train our model in a sequence-to-sequence fash-
ion, we pre-process the User-Log dataset (in Section 2) as session

pairs. Specifically, we allow sequences with variable lengths not
exceeding the maximum time step T . User sessions with larger size
are divided into several consecutive sub-sessions by using non-
overlapped sliding window of size T . We remove the users who
only have an individual session of a smaller size than T . Hence,
we generate datasets with different users upon the maximum time
step. To explore the temporal impact of different lengths, we set
T = 30 andT = 100 to obtain two datasets as summarized in Table 1,
and termed as User-Log-30 and User-Log-100, respectively. We ran-
domly held out 10% users from these two datasets for evaluation.

On the other side, we collect 49, 763 action-sentence pairs from
1, 781 tutorials from our Tutorial dataset. We pre-process these
sentences by filtering out low frequency words and reduce the
vocabulary to 3676 unique words. All these sentences are linked
to 426 actions in our User-Log dataset, resulting each action has
an average number of 116 sentences. To fully utilize the tutorial
information, we slide over each tutorial by a window of size 10
with one step. By this means, we obtain 33, 090 consecutive action
sequences with ground-truth annotation sentences. We randomly
select 5% tutorial sequences as a test set.

4.1.2 Validation Criteria. User intent is a general concept that
covers a wide range of user choices. In the experiment, we employ
Hits@K to evaluate the annotation retrieval and action prediction
task; while employ Recall@K for the user interest detection task.
In details, we give one hit if the desired annotation/action is in
the top K predictions. Following [16, 33], the Hits@K is given by
Hits@K = #hit@K

|Dtest |
, where Dtest represent the testing set. Note

that, Hits@K is equivalent to top-K accuracy, since we have one
exact annotation/action for each time step or the given sequence.

On the other side, Recall@K is computed by

Recall@K =
|GT ∩ top K predicted interests|

|GT|
, (19)

where GT represents the set of ground-truth labels, as each user
could have multiple interests. We average Recall@K for all the
users in Dtest . We range K from 1 to 5 in the experiment.

4.1.3 ImplementationDetails. We implement our Log2Intentmodel
with the Tensorflow framework, and employ theAdamoptimizer [18]
with an initial learning rate of 0.001. In our model, we have |Va | =
940 and |Vw | = 3676. We set da ,dm = 100 as the embedding size
for action embedding A and memory embedding matrices M,O,
respectively. We learnA by training word2vec [25] model on the en-
tire User-Log data, and fix it during our training procedure to avoid
overfitting.M and O are initialized by Glove [28] word embeddings
and further fine-tuned in training. We employ dh = 64 hidden units
for all the GRUs in our encoding pathway, while the dimension of
decoder GRU is upon the fusion function д(·, ·) in Eq. (9): 64 for
summation; 128 for concatenation. In the experiment, we employ
the concatenation function without specification. For our memory
unit, we setM = 50 with L = 30, which means each action is linked
to a set of 50 sentences and each sentence has a maximum length
of 30. During training, we randomly selectM = 50 memory slots
for actions that have more than 50 annotations, and pad empty
memories for the actions have fewer annotations. We train our net-
work with the batch size of 128. For simplicity, we alternately train
our network by Lu with batch from User-Log and Lu′ with batch
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Table 2: Log annotation retrieval on the tutorial test set.

Methods Hits@1 Hits@2 Hits@3 Hits@4 Hits@5

MemNet-Act 0.0436 0.0777 0.1103 0.1417 0.1714
MemNet-SeqAvg 0.2505 0.3636 0.4401 0.4995 0.5483
MemNet-u2v 0.1738 0.2660 0.3289 0.3812 0.4249
Log2Intent 0.4697 0.6048 0.6755 0.7185 0.7512

from tutorial training sequences. Layer normalization [3] is used
to accelerate the training procedure. Our model is usually trained
for four days on a GPU machine with NVIDIA Titan X cards.

4.2 Log Annotation Retrieval
Interpreting log history in a human readable way is crucial for
understanding user behavior. However, it is quite challenging and
time consuming, even for the professional software designer, to
annotate the wild and long log history. In this paper, we utilize
the Tutorial dataset as an auxiliary knowledge source to explain
the action sequences. Specifically, we formulate log annotations as
memory slots for each action, and expect to attend to meaningful
sentences upon the temporal context among action sequence.

To validate the effectiveness of our semantics attention mech-
anism, we formulate log interpretation as a “annotation retrieval”
task on the test set of our tutorial dataset. Specifically, given a tuto-
rial action sequence [a1, · · · ,aT ] ∈ u ′, each of which has its own
memory blockM (K annotation sentences) and the ground-truth
annotation index y′t ∈ R

K , our goal is to retrieve the correct anno-
tation fromM queried by at , i.e., to predict y′t at each time step (see
Section 3.4.2 for more details). It is worth noting that, as the same
software action has different annotations according to sequential
context, this task works as a sanity check for our model, which
should memorize the relationship between temporal patterns and
annotation sentences.

Baselines. We implement three baseline methods upon the same
memory network architecture (i.e., θmem ) in Section 3.3 with dif-
ferent query methods as follows.

• MemNet-Act (qt = xt ) uses an individual action as query
without considering the temporal context in a log sequence.
• MemNet-SeqAvg (qt = [xt ; 1

T
∑T
i=1 xi ]) conditions the av-

erage action embeddings in a log sequence on the query at
each time step.
• MemNet-u2v (qt = [xt ; fu2v (s )],xt ∈ s) utilizes the infer-
ence model (i.e., fu2v ) given by util2vec (u2v) [38] to capture
the temporal information within log sequence.

We train these three methods with the attention loss given by
Eq. (17) until the model converges on the Tutorial dataset. The
util2vec [38] model is pre-trained on the entire User-Log dataset
(as training u2v does not require sequence pair). The proposed
Log2Intentmodel is trained on the User-Log-30 and Tutorial datasets,
and we formulate query as qt = [xt ; ht ], where ht is given by our
temporal encoderfenc−T . For all the methods, the retrieval results
are directly given by top K attention weights.

Retrieval Results on Tutorials. Table 2 shows the compari-
son results between our model and other methods on the Tutorial
test set by Hist@K . As can be seen, MemNet-Act cannot attend to
the correct annotation without using temporal context, since the

Table 3: Log interpretation examples for log snippets in the
User-Log dataset, where each block is one example with ac-
tion sequence and its annotations given by our model.

Action sequence Interpretation by attended memory slots (annotations)

[open] Step 33 Open the tourist photo.
[crop_tool] You can fine-tune your crop with the arrow keys.
[layer_via_copy] (Layer>Layer via Copy).
[new_curves_layer] Go to Layer > New Adjustment > Curves and add Curves adjustment

layer.
[new_levels_layer] Add a Black and White adjustment layer, then add a Levels adjustment

layer.
[zoom_in_tool] Click repeatedly to zoom in closer.

Action sequence Interpretation by attended memory slots (annotations)

[open] Open your Tractor Image.
[rectangular_marquee] With the Rectangular Marquee Tool (M) create a rectangular selection

like the image below.
[rectangular_marquee_tool] To do that, activate the Rectangular Marquee tool (M) and then select

the rope of our swing.
[paste] Press CTRL + V to paste in your texture.
[eraser] Use the Eraser Tool (E) at any point to remove any harsh edges.
[brush_tool] With a large, soft brush paint black on the bottom, and corners of the

rectangle and white in the middle.
[eraser] Use the Eraser Tool (E) to erase any blurred edges to bring back some

sharpness around the face and body.
[brush_tool] Choose a Soft Round brush at 40-80% Opacity.
[move] Pick the Move Tool ( V ) and Control-click the part you want to color.

same action is corresponding to different memory slots (log annota-
tions) upon different contexts. On the other side, MemNet-SeqAvg
performs better than MemNet-u2v, which is mainly due to two
reasons: 1) averaging actually considers longer-range temporal in-
formation than util2vec [38] (as u2v adopts a small sliding window);
2) util2vec [38] focuses onmodeling global user representation from
her/his entire log history, yet without explicitly considers the local
temporal information. The proposed Log2Intent model leverages
the RSMU block to recurrently query action’s memory at each time
step (i.e., qt = [xt ; ht ]), which effectively captures the temporal pat-
tern in a log sequence. As shown in Table 2, our approach achieves
a substantial improvement over baselines. This demonstrates the
effectiveness of using attended sentence for the log interpretation
task, conditioning on the temporal context.

Interpret User-Log Data. Table. 3 presents two interpretation
results for the log snippets in the User-Log-30 dataset. Though
we cannot validate these wild user logs, we have two interesting
conclusions. (1) Despite the limitation of the topics covered by
the Tutorial dataset, our model could explain the common actions
with texts. For example, we can well describe the actions such
as [crop_tool], [zoom_in_tool] in the first example; and [paste],
[move] in the second one by providing extra text information from
attended memories. (2) The interpretation provided by our model is
impacted by the action sequence. For instance, the [brush_tool] of
the second example in Fig. 3 is given by different attended sentences
upon different contexts. All these attended sentences provide an
alternatively view for the unstructured log history, which can help
software designer to understand the user behavior.

4.3 User Interest Detection
In this evaluation task, we aim to infer user’s interest only upon
the log history. Our intuition is that users who share similar in-
terest (or say occupation, self-disclosed tag, etc) may have similar
temporal pattern in their software log history, as they usually work
with similar contents and jobs. Thus, this requires our model could
obtain a compact user representation. Given a user u with log his-
tory [s1, . . . , sT ], we obtain hu by averaging all the session vectors
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Table 4: User interest detection evaluation in terms of Recall@K (%).

Methods Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

Detection Performance

Popular tags 15.41±0.34 24.35±0.39 33.00±0.41 38.65±0.41 43.50±0.46
BoA + tf-idf (baseline) 17.15±0.57 26.78±0.59 33.93±0.61 39.62±0.69 44.55±0.78
util2vec [38] 18.22±0.52 28.20±0.62 35.54±0.62 41.46±0.71 46.45±0.70
Log2Intent 19.00±0.51† 29.25±0.58† 36.62±0.60† 42.68±0.56† 47.87±0.60†

% of improvements util2vec [38] over baseline 6.20% 5.32% 4.77% 4.65% 4.27%
Log2Intent over baseline 10.80% 9.24% 7.93% 7.73% 7.45%

†: p-value < 0.01 under statistical significance test.

Method Top1 Top2 Top3 Top4 Top5 

Pop tags Graphic Design Illustration Photography Branding Art Direction

Log2Intent Photography
Digital 

Photography Fine Arts Graphic Design
Performing 

Arts

User interests (Ground truth) Fine Arts, Photography, Digital Photography

Method Top1 Top2 Top3 Top4 Top5

Pop tags Graphic Design Illustration Photography Branding Art Direction

Log2Intent Illustration Digital Art Graphic Design Drawing Character 
Design

User interests (Ground truth) Illustration, Digital Art, Character Design

Method Top1 Top2 Top3 Top4 Top5

Pop tags Graphic Design Illustration Photography Branding Art Direction

Log2Intent Graphic Design Print Design Advertising Art Direction Branding

User interests (Ground truth) Print Design, Graphic Design, Branding

Method Top1 Top2 Top3 Top4 Top5

Pop tags Graphic Design Illustration Photography Branding Art Direction

Log2Intent Graphic Design Illustration Fine Arts Painting Drawing

User interests (Ground truth) Illustration, Painting

Figure 4: Four user interest detection examples. For each user, we show her uploaded project images, popular user tags, user
interest detection results by Log2Intent and her self-disclosed interests. We highlight the correct detections and the highly
related ones with orange and green color, respectively.

obtained by Eq. (9), i.e., we have hu = 1
|u |
∑
s i ∈u hi . We employ our

user representation to explore the possible user interests, which is
formulated as a multi-label classification problem on the Behance
dataset (see details below). To purely validate the effectiveness of hu ,
we only train a linear classifier as yu =Wuhu , where Wu directly
projects user representation as a multi-label vector yu . We trainWu
by the sigmoid cross-entropy loss with limited-memory BFGS [22].
Moreover, hu is obtained by our Log2Intent model trained on the
User-Log-100 dataset with the summation function.

Behance Dataset. We use the user data collected from Behance1,
which is a social platform maintained by Adobe creative cloud. It
allows users to upload their projects upon self-disclosed interests,
such as Photograph, Web Design, Fashion etc. We summarize the
majority user interests as 67 tags as following [38], and collect 9, 439
users who are also the Photoshop users in our User-Log dataset.
Hence, for each user in the Behance dataset, we have its user log
record in February 2018, as well as a multi-hot label vector yu ∈ R67.
We use a random training/testing split of size 7439/2000.

Baselines. Three strong baselines as used as follows. (1)Popular
tags. We employ the 5 most popular user interest labels as the
prediction results, i.e., Graphic Design, Illustration, Photography,
Branding and Art Direction. (2) Bag-of-Actions (BoA) + tf-idf.

1https://www.behance.net/

BoA computes the times of each action performed by the user.
We adopt tf-idf to lower the weights of actions with high session
frequency, such as [open] and [save_as]. (3)util2vec (u2v) [38]. u2v
is the state-of-the-art user representation learning method for log-
trace data. It focuses on capturing the short-term temporal pattern
exiting in the user’s log history. We train a multi-label classifier
with BoA and u2v user representations, respectively, under the
same setting to our approach.

Detection Results. Table 4 summarizes the user interest detec-
tion results of our approach and three compared methods. We
do random split on the Behance dataset 20 times, and report the
average Recall@K values with standard deviation. We also do a
significance test between our result and util2vec [38]. The p-value
for each Recall@K is less than 0.01, indicating the differences are
statistically significant. Moreover, we also compare the relative im-
provement between Log2Intent and util2vec [38] over the baseline
of BoA+tf-idf. As can be seen, our approach consistently outper-
forms util2vec from Recall@1 to Recall@5. This demonstrates the
effectiveness of our Log2Intent model in learning user represen-
tations. It is worth noting that, though we simply average all the
session vectors among user’s log history, we still have a better
performance than util2vec [38], which is specifically designed for
learning a global user representation based on the short-term tem-
poral context from log history. This fully verifies our assumption

https://www.behance.net/
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Table 5: Next action prediction on User-Log-30 and User-Log-100 datasets by Hits@K.

Methods sequence 30→ 1 action sequence 100→ 1 action

Hits@1 Hits@2 Hits@3 Hits@4 Hits@5 Hits@1 Hits@2 Hits@3 Hits@4 Hits@5

Bag-of-Actions 0.3104 0.4798 0.5644 0.6206 0.6623 0.3814 0.5356 0.6029 0.6498 0.6841
Average Action Embeddings 0.2989 0.4653 0.5513 0.6078 0.6494 0.3427 0.4898 0.5625 0.6188 0.6606
util2vec [38] 0.2001 0.3252 0.3938 0.4447 0.4835 0.2949 0.4241 0.4996 0.5518 0.5919
Log2Intent w/o RSMU 0.5421 0.6735 0.7313 0.7666 0.7935 0.5837 0.7184 0.7662 0.7981 0.8209
Log2Intent 0.5548 0.6906 0.7495 0.7864 0.8124 0.5992 0.7377 0.7885 0.8195 0.8412

that users’ long-term temporal pattern is more representative and
thus more effective for the personalized user modeling task.

Some visualization results of user interest detection are shown in
Fig. 4, where several important observations could bemade. (1)With
only around 7k training samples, our user representation is still able
to explore diverse user interests. As can be seen, we successfully
detect many less popular interest labels, such as fine arts, character
design and painting. This justifies the ability of our approach for
mining personalized usage habits. (2) Our approach can recommend
relevant interests to user, as the examples highlighting with green
color in Fig. 4, which shows the great potential of applying our
approach to cross-platform recommendation.

4.4 User Action Prediction
Predicting user’s next action is another related task to “leak” user
intent. In this section, we train our model on the User-Log-30 and
User-Log-100 datasets, respectively, and directly decode the follow-
ing immediate action conditioning on the session vector obtained
from the last session.

Baselines. Four baseline methods are employed in this evalua-
tion. (1) Bag-of-Actions (BoA). BoA counts the action frequency
within each session, which is a standard user modeling approach for
service providers [21]. (2) Average Action Embeddings. We av-
erage all the action embeddings in one session as the feature vector.
(3) util2vec (u2v) [38]. We employ the pre-trained util2vec model
on the entire User-Log dataset to infer a feature representation for
each given session. We train a one-layer network by softmax cross-
entropy loss with BoA, average action embeddings and u2v features,
respectively. (4) Log2Intent w/o RSMU. Log2Intent w/o RSMU is
an implementation of the proposed model without using RSMU.
We compare with Log2Intent w/o RSMU to explore the impact of
incorporating semantics information into the log encoding.

Prediction Results. Table 5 shows the action prediction perfor-
mance of our approach and baselines by Hits@K . As can be seen,
our Log2Intent model significantly improves the performance over
BoA, average action embeddings and util2vec [38], which again
demonstrates the effectiveness of leveraging long-term temporal
information for the user modeling task. Moreover, our approach
slightly outperforms Log2Intent w/o RSMU. This justifies the intu-
ition behind our prediction task, i.e., the semantic memories could
also help to infer user’s following actions to some extent.

5 RELATEDWORK
Software User Modeling. User modeling is an important task for
personalized recommendation and is widely used by online so-
cial and E-commerce platforms. The goal of such modeling is to

summarize user preferences, habits and profiles to improve user
experience, which however, could be roughly summarized as to ex-
plore user’s intent. Lots of research efforts have been made for this
task by considering user data such as rating [5], contents [2, 17, 32],
and reviews [39]. However, log-trace data, which contain rich user
information, is still under explored.

Some previous works [1, 10, 21, 24] working with software ac-
tions are mainly designed to build a command recommendation
system to assist users to complete complex task and learn soft-
ware usage, yet neglect to learn a generic user representation. The
most related method to this paper is one recent work termed as
util2vec [38], which learns user representation by utilizing short-
term temporal context within user’s log history in a doc2vec [20]
framework. Different from util2vec [38], we explicitly leverage the
long-term sequential information from user logs, and provide an
efficient way to interpret the user behavior.

Sequential Modeling. Recurrent neural network (RNN) has
been widely used for modeling sequential data in a wide range of
applications, such as neural machine translation [4, 30] and speech
recognition [12]. Among RNNs, LSTM [15] and GRU [8] are two
important structures, and temporal attention mechanism [4, 23] is
usually adopted by sequence to sequence model. Recently, recurrent
sequential recommendation has attacked a lot of attentions, such
as session-based recommendation [14] and recurrent recommender
networks [35], which mainly adopt a RNN encoder followed by a
ranking loss and are specifically designed for user recommendation.
Different from these methods, our Log2Intent model serves with
more general and broader purposes. Specifically, we develop our
model by an encoder-decoder framework with semantics attention
mechanism, and target to mine user’s intent from her log history.

Memory Network. The neural memory network (memNet) pro-
posed byWeston et. al. in [34] generally consists of two components:
1) a memory matrix to save information (i.e., memory slots) and 2)
a neural network controller to address/read/write memories. The
memNet has shown better performance than traditional RNNs in
several tasks, such as question answering [26, 29] and machine
translation [13]. This is mainly due to its advantage over tacking
long-term relationship and more storage units than a single hid-
den state. Following [34], several popular memory networks have
been proposed as end-to-end memNet [29], Key-Value memNet[26],
and dynamic memNet [36]. Our method is mainly based on the
end-to-end memNet [29], which employs two memory embedding
matrices to implement memory addressing and reading. In partic-
ular, we incorporate memory network into an RNN encoder, and
recurrently query and write the memory unit through the network
update. Similar to us, the recurrent memNet [31] also combines
RNN network with a memory block. However, there are two main
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differences between our Log2Intent model and [31]. First, Ref [31]
utilizes memory network for language modeling, while Log2Intent
adopts a sequence-to-sequence model for the user modeling task.
Second, memory units in [31] are designed with last words to help
prediction; however, we develop our memory with semantic sen-
tences for interpretation. Most recently, the memory network has
also drawn attentions from user recommendation tasks [6, 9, 33].
Compared with these methods, we not only implement a semantic
recurrent memNet, but also provide a general framework that could
cover a wide range of user modeling tasks.

6 CONCLUSION
An interpretable user modeling method termed as Log2Intent has
been proposed in this paper, which mines user intent from sequen-
tial log-trace data. We implemented Log2Intent by incorporating
auxiliary knowledge with memory network into a sequence to
sequence model. Specifically, a recurrent semantics memory unit
(RSMU) was developed to link the temporal encoder with the se-
mantic one, which are jointly trained with a log action decoder
network. We collected memory slots from software tutorials, and
further supervised RSMU with annotated action sequence in the
tutorial dataset. A session vector encapsulating long-term temporal
patterns and attended memories was eventually delivered as user
representations. Three evaluation tasks including log annotation
retrieval, user interest detection and next action prediction were
conducted on the Photoshop Tutorial and User-Log dataset. Exper-
imental results compared with the state-of-the-art log-trace user
modeling method demonstrated the effectiveness of the proposed
Log2Intent model, as well as the great potentials of mining user
intent from software log-trace history.
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