
Collaborative Metric Learning

Cheng-Kang Hsieh‡, Longqi Yang†,Yin Cui†, Tsung-Yi Lin†, Serge Belongie†, Deborah Estrin†
‡UCLA; †Cornell Tech

‡changun@cs.ucla.edu; †{ly283, yc984, tl483, sjb344, destrin}@cornell.edu

ABSTRACT
Metric learning algorithms produce distance metrics that
capture the important relationships among data. In this
work, we study the connection between metric learning and
collaborative filtering. We propose Collaborative Metric
Learning (CML) which learns a joint metric space to encode
not only users’ preferences but also the user-user and item-
item similarity. The proposed algorithm outperforms state-
of-the-art collaborative filtering algorithms on a wide range
of recommendation tasks and uncovers the underlying spec-
trum of users’ fine-grained preferences. CML also achieves
significant speedup for Top-K recommendation tasks using
off-the-shelf, approximate nearest-neighbor search, with neg-
ligible accuracy reduction.

1. INTRODUCTION
The notion of distance is at the heart of many fundamental

machine learning algorithms, including K-nearest neighbor,
K-means and SVMs. Metric learning algorithms produce
a distance metric that captures the important relationships
among data and is an indispensable technique for many suc-
cessful machine learning applications, including image clas-
sification, document retrieval and protein function predic-
tion. [43, 45, 26, 52, 32]. In this paper we apply metric
learning to collaborative filtering problems and compare it
to state-of-the-art collaborative filtering approaches.

Given a set of objects in which we know certain pairs
of objects are “similar” or “dissimilar,” the goal of metric
learning is to learn a distance metric that respects these
relationships. Specifically, we would like to learn a met-
ric that assigns smaller distances between similar pairs, and
larger distances between dissimilar pairs. For instance, in
face recognition, we may wish to learn a metric that assigns
small distances to genuine (same identity) face pairs and
large distances to impostor (different identity) pairs, based
on image pixels [43, 29].

Mathematically, a metric needs to satisfy several condi-
tions, among which the triangle inequality is the most cru-

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052639

.

cial to the generalization of a learned metric [29, 51]. The
triangle inequality states that for any three objects, the sum
of any two pairwise distances should be greater than or equal
to the remaining pairwise distance. This implies that, given
the information: “x is similar to both y and z,” a learned
metric will not only pull the stated two pairs closer, but
also pull the remaining pair (y, z) relatively close to one an-
other.1 We can see this as a similarity propagation process,
in which the learned metric propagates the known similarity
information to the pairs whose relationships are unknown.

This notion of similarity propagation is closely related to
collaborative filtering (CF). In collaborative filtering, we also
observe the relationships between certain (user,item) pairs,
i.e., the users’ ratings of items, and would like to generalize
this information to other unseen pairs [31, 40]. For example,
the most well-known CF technique, matrix factorization,
uses the dot product between user/item vectors to capture
the known ratings, and uses the dot product of those vectors
to predict the unknown ratings [25].

However, in spite of their conceptual similarity, in most
cases matrix factorization is not a metric learning approach
because dot product does not satisfy the crucial triangle
inequality [36, 42]. As we will illustrate in Section 3.6, al-
though matrix factorization can capture users’ general in-
terests, it may fail to capture the finer grained preference
information when the triangle inequality is violated, which
leads to suboptimal performance, as seen in Section 4. Also,
while we can predict the ratings with a matrix factoriza-
tion system, we cannot reliably determine the user-user and
item-item relationships with such a system, which signifi-
cantly limits the interpretability of resulting model.2

In this paper, we propose collaborative metric learn-
ing (CML) which learns a joint user-item metric to encode
not only users’ preferences but also the user-user and item-
item similarity. We focus on the collaborative filtering prob-
lem for implicit feedback and show that CML naturally cap-
tures such relationships and outperforms state-of-the-art al-
gorithms in a wide range of recommendation domains, in-
cluding books, news and photography, by up to 13.95% in
recall rates for pure rating-based CF and 17.66% for CF with
content information.

1(y, z)’s distance is bounded by the sum of distances between
(x, y) and (x, z): d(y, z) ≤ d(x, y) + d(x, z).
2A common heuristic is to measure latent vectors’ cosine
similarity, but this heuristic leads to misleading results when
the triangle inequality is not satisfied as shown in Section
3.6.

Beyond the improvement in accuracy, an exciting property
of CML is its capability of uncovering fine-grained relation-
ships among users’ preferences. In Section 4.5, we demon-
strate this capability using a Flickr photographic dataset.
We demonstrate how the visualization of the learned metric
can reveal user preferences for different scenes and objects,
and uncovers the underlying spectrum of users’ preferences.

We show CML’s capability of integrating various types of
item features, including images, texts, and tags, through a
probabilistic interpretation of the model. Finally, we also
demonstrate that the efficiency of CML’s Top-K recommen-
dation tasks can be improved by more than 2 orders of
magnitude using the off-the-shelf Locality-Sensitive Hashing
(LSH), with only negligible reduction in accuracy [4].3

The remainder of this paper is organized as follows. In
Section 2 we review relevant prior work on metric learn-
ing and collaborative filtering. In Section 3 we propose our
CML model along with a suite of regularization and train-
ing techniques. In Section 4 we evaluate CML relative to
the state-of-the-art recommendation algorithms and show
how the learned metric can uncover users’ fine-grained pref-
erences. In Section 5 we conclude and discuss future work.

2. BACKGROUND
In this section we review the background of metric learn-

ing and collaborative filtering with a particular focus on col-
laborative filtering for implicit feedback.

2.1 Metric Learning
Let X = {x1, x2, ..., xn} be a collection of data over the

input space Rm. The label information in metric learning is
specified in the form of pairwise constraints, including the
set of known similar pairs, denoted by

S = {(xi, xj)|xi and xjare considered similar},

and the set of dissimilar pairs, denoted by

D = {(xi, xj)|xi and xjare considered dissimilar}.

The most original metric learning approach attempts to learn
a Mahalanobis distance metric

dA(xi, xj) =
√

(xi − xj)TA(xi − xj) ,

where A ∈ Rm×m is a positive semi-definite matrix [51].
This is equivalent to projecting each input x to a new space
Rm in which their euclidean distances obey the desired con-
straints. There are many different ways to create such a
metric. The most original approach was to globally solve
the following convex optimization problem:

min
A

∑
(xi,xj)∈S dA(xi, xj)

2

s.t.
∑

(xi,xj)∈D dA(xi, xj)
2 ≥ 1 and A � 0.

More recent approaches tend to use non-linear transforma-
tion functions, e.g., kernel trick or neural nets, to improve
the metric accuracy [49, 48, 8, 21].

3Matrix Factorization can also be sped up with a
specifically-designed asymmetric hashing [42]. We provide
a comparison in Section 4.4.

2.2 Metric Learning for kNN
The above global optimization essentially attempts to learn

a distance metric that pulls all similar pairs together, and
pushs dissimilar pairs apart. This objective, however, is not
always feasible. On the other hand, Weinberger et al. showed
that if the learned metric is to be used for k-nearest neigh-
bor classification, it is sufficient to just learn a metric that
makes each object’s k-nearest neighbors be the objects that
share the same class label with that object (as opposed to
clustering all of the similar object together) [49]. This ob-
jective is much more attainable, and we adopt this relaxed
notion of metric learning in our model as our goal is also to
find the kNN items to recommend to each user.

Specifically, given an input x, we refer to the data points
we desire to be the closest to x as its target neighbors. We
can imagine x’s target neighbors establishing a perimeter
that differently labeled inputs should not invade. The dif-
ferently labeled inputs that invade the perimeter are referred
to as impostors. The goal of learning, in general, is to learn
a metric that minimizes the number of impostors [49].

One of the most well-known models of this type is large
margin nearest neighbor (LMNN) [49] that uses two loss
terms to formulate this idea. Specifically, LMNN defines a
pull loss that pulls the target neighbors of an input x closer:

Lpull(d) =
∑
j;i

d(xi, xj)
2,

where j ; i denotes that the input j is input i’s target
neighbor. In addition, LMNN defines a push loss that pushes
away the impostors from the neighborhood and maintains a
margin of safety around the kNN decision boundaries:

Lpush(d) =
∑
i,j;i

∑
k

(1− yik)[1 + d(xi, xj)
2 − d(xi, xk)2]+,

where indicator function yik = 1 if input i and k are of the
same class, otherwise yik = 0, and [z]+ = max(z, 0) is the
standard hinge loss. The complete loss function of LMNN
is a weighted combination of Lpull(d) and Lpush(d) and can
be optimized through semidefinite programming.

2.3 Collaborative Filtering
We now turn our attention to collaborative filtering (CF),

in particular, collaborative filtering with implicit feedback.
Traditional collaborative filtering algorithms were based on
the user similarity computed by heuristics, such as cosine
similarity. The recommendations were made by aggregating
the ratings of the K-nearest users who are the most similar
to the query user [40, 31].

Over the last decade, matrix factorization (MF) has be-
come the most popular CF approach due to its superior
performance [25, 19, 1]. The original MF models were de-
signed to model users’ explicit feedback by mapping users
and items to a latent factor space, such that user-item re-
lationships (i.e., ratings) can be captured by their latent
factors’ dot product. Specifically, let rij denote user i’s rat-
ing to item j, we learn user vector ui ∈ Rr and item vector
vj ∈ Rr, such that their dot product uTi vj approximate rij
[25]. This formulation leads to the optimization problem
that minimizes the mean squared error on the set of known

ratings:

min
u∗,v∗

∑
rij∈K

(rij − uTi vj)
2 + λu‖ui‖2 + λv‖vi‖2,

where K is the set of known ratings; λu and λv are hyper-
parameters that regularize the L2-norm of u∗ and v∗.

2.3.1 Implicit Feedback
Besides explicit feedback, there are many other signals

that can be utilized to infer users’ preferences, such as likes,
bookmarks, click-through, etc., which are collectively re-
ferred to as implicit feedback [19, 38]. Implicit feedback
is usually more abundant and less biased than its explicit
counterpart [22, 20], and has received much attention in the
research community [19, 35, 38, 3, 46, 16].

However, it is problematic to apply traditional matrix fac-
torization to implicit feedback, mainly for two reasons: first,
with implicit feedback, we only observe positive feedback
(i.e., rij = 1, ∀rij ∈ K). We cannot ignore the unobserved
user-item interactions, otherwise it will lead to trivial but
useless solutions (e.g., collapsing all the latent vectors to a
single point). Also, we cannot assume these unobserved in-
teractions as negative either, as we do not know the fact
that these interactions did not happen was because the user
did not like the item or the user was not aware of it [19].

To address these issues, Hu et al. and Pan et al. proposed
weighted regularized matrix factorization (WRMF)
[19, 35] that includes all the unobserved user-item inter-
actions as negative samples and uses a case weight ci,j to
reduce the impact of these uncertain samples, i.e.,

min
u∗,v∗

∑
rij∈K

cij(rij − uTi vj)
2 + λu‖ui‖2 + λv‖vi‖2,

where case weight cij is larger for observed positive feedback
and smaller for unobserved interactions.

2.3.2 Bayesian Personalized Ranking
As the above discussion shows, with implicit feedback,

the notion of “ratings” become less precise. As a result,
more recent matrix factorization models start to move away
from estimating a specific set of ratings to, instead, mod-
eling the relative preferences (or orders) between different
items. Bayesian personalized ranking (BPR) proposed
by Rendle et al. [38] is a well-known example of this type.
Let Di be a set of item pairs (j, k) where user i has inter-
acted with item j but not item k, assuming user i might be
more interested in item j than item k, BPR minimizes the
pairwise ranking loss:

min
u∗,v∗

∑
i∈I

∑
(j,k)∈Di

−log σ(uTi vj−uTi vk)+λu‖ui‖2 +λv‖vj‖2,

where σ is the sigmoid function.
Through this loss function, BPR essentially attempts to

minimize the error of predicting, between a pair of items,
which one the user prefers. This loss function is also equiv-
alent to optimizing the Area Under ROC Curve (AUC) for
each user [39]. However, an issue with the BPR loss is that
it does not sufficiently penalize the items that are at a lower
rank. It produces suboptimal results for Top-K recommen-
dation tasks where only the items ranked within the Top-K
matter [53]. A popular way to improve the Top-K recom-
mendation is to adopt a weighted ranking loss that penalizes

the positive items at a lower rank [50, 27, 28] and will be
described further in Section 3.2.

3. COLLABORATIVE METRIC LEARNING
The above discussion highlights the fact that, by moving

from explicit feedback to implicit feedback, the focus of col-
laborative filtering is no longer about estimating a specific
rating matrix but about capturing users’ relative preferences
for different items.

In this section we describe CML as a more natural way
to capture such relative relationships. The high level idea of
CML is as follows: we model the observed implicit feedback
as a set of user-item pairs S that we know have positive
relationships and learn a user-item joint metric to encode
these relationships. Specifically, the learned metric pulls the
pairs in S closer and pushes the other pairs relatively further
apart. This process, due to the triangle inequality, will also
cluster 1) the users who co-like the same items together, and
2) the items that are co-liked by the same users together.
Eventually, the nearest neighbor items for any given user
will become:

• the items liked by this user previously, and

• the items liked by other users who share a similar taste
with this user previously.

In other words, by learning a metric that obeys the known
positive relationships, we propagate these relationships not
only to other user-item pairs, but also to those user-user and
item-item pairs for which we did not directly observe such
relationships. In the following, we formulate this idea more
formally.

3.1 Model Formulation
We represent each user and each item with a user vector

ui ∈ Rr and an item vector vj ∈ Rr. We learn these vectors
in a way that their euclidean distance, i.e.,

d(i, j) = ‖ui − vj‖,

will obey user i’s relative preferences for different items,
namely an item this user liked will be closer to this user
than other items he did not like. We use the following loss
function to formulate such a constraint:

Lm(d) =
∑

(i,j)∈S

∑
(i,k)/∈S

wij [m+ d(i, j)2 − d(i, k)2]+, (1)

where j is an item user i liked, k is an item he did not like;
[z]+ = max(z, 0) denotes the standard hinge loss, wij is a
ranking loss weight (described later), and m > 0 is the safety
margin size.

Figure 1 illustrates the gradients resulting from this loss
function.4 For items the user likes, their gradients move
inward to create a smaller radius. For impostor items, which
are the items the user did not like but which invade the
perimeter, their gradients move outward from the user until
they are pushed out of the perimeter by a safe margin.

This loss function is similar to that of LMNN but with
three important differences:

• Each user’s target neighbors are all the items he liked,
and there is no target neighbor for items.

4The outline of this figure is inspired by [49].

User

Positive	item

Imposter

Margin

Gradients

Before After

Figure 1: An illustration of collaborative metric learning. The hinge loss defined in Eq. 1 creates a gradient
that pulls positive items closer to the user and pushes the intruding impostor items (i.e., items that the user
did not like) away until they are beyond the safety margin.

• We do not have the Lpull term because an item can
be liked by many users, and it is not feasible to pull
it closer to all of them. However, our push loss pulls
the positive items closer to the user when there are
impostors.

• We adopt a weighted ranking loss to improve the Top-
K recommendations described in the next subsection.

3.2 Approximated Ranking Weight
We use a rank-based weighting scheme, called Weighted

Approximate-Rank Pairwise (WARP) loss, proposed by We-
ston et al. to penalize items at a lower rank [50]. Given
a metric d, let J denote the total number of items and
rankd(i, j) denote the rank of item j in user i’s recommen-
dations 5, we penalize a positive item j based on its rank by
setting

wij = log(rankd(i, j) + 1).

This scheme penalizes a positive item at a lower rank much
more heavily than one at the top, and produces the state-
of-the-art results in many prior works [50, 53, 28]. However,
computing rankd(i, j) at each gradient descent step is rather
expensive.

Weston et al. proposed to estimate rankd(i, j) through
a sequential sampling procedure that repeatedly samples a
negative item until we find an impostor [50]. Specifically,
let N denote the number of negative items we need to sam-
ple to find an impostor k that has non-zero loss in Eq. 1,
the rankd(i, j) is then approximated as b J

N
c. This proce-

dure is similar to negative sample mining commonly used
in object detection where easy but non-informative negative
samples dominate the training set [7]. The number of neg-
ative samples N is usually bounded by a constant U = 10
or 20 to avoid an extended sampling time [27, 53]. In our
work, however, we replace this sequential procedure with a
parallel procedure to utilize the massive parallelism enabled
by modern GPUs:

1. For each user-item pair (i, j), sample U negative items
in parallel and compute the hinge loss in Eq. 1.

50 ≤ rankd(i, j) < J , and the top item’s rankd(i, j) = 0

f ()

f ()

𝑓 𝑥1

𝒗1

𝑓 𝑥2

𝒗2

f ()
𝑓 𝑥3

𝒗3

User Gaussian prior Item

Figure 2: A learnable transformation function f is
used to project item features (e.g., image pixels)
into the user-item joint space. The projections are
treated as a Gaussian prior for items’ locations.

2. Let M denote the number of imposts in U samples,
rankd(i, j) is then approximated as bJ×M

U
c

It might seem wasteful to always sample U negative items.
However, empirically, we find that CML pushes the positive
items to a high rank rather quickly after the first few epochs.
Therefore, in most cases, we need to sample a similar number
of negative items in order to find an impostor, even with the
sequential procedure.

3.3 Integrating Item Features
As mentioned in Section 2.1, the original idea of metric

learning is to learn a transformation function f that projects
the raw inputs to an euclidean space [51]. We adopt a sim-
ilar idea to integrate item features that are often available
in a recommendation system; such as items’ text descrip-
tions, tags, or image pixels.6 Let xj ∈ Rm denote the m-
dimensional raw feature vector of item j, as illustrated in
Figure 2, we learn a transformation function f that projects
xj to the joint user-item space described earlier. As the

6Note that the same formulation can be applied to user fea-
tures as well.

projection f(xj) should, to some extent, capture item j’s
characteristics, we penalize the item j’s eventual location
in the space (i.e., vj) when vj deviates away from f(xj).
Specifically, let θ denote the parameters of the function f ,
we define the following L2 loss function:

Lf (θ,v∗) =
∑
j

‖f(xj, θ)− vj‖2.

This loss function essentially treats f(xj) as a Gaussian prior
to vj , and we fine-tune the location of vj when we have more
information about it (i.e., more ratings). Note that the func-
tion f is trainable, and during the training, we simultane-
ously minimize Lf and metric loss Lm described earlier to
make function f and v∗ mutually inform each other. Specif-
ically, the transformation function f is informed by v∗ and
learns to pick up the features that are most relevant to users’
preferences; and v∗ is informed by f in a way that the items
with similar features will tend to be clustered together and
improve the metric accuracy especially for less-rated items.
We choose multi-layer perceptron (MLP) with dropout
as our transformation function f for its superior representa-
tional capacity and ease of training [14, 5].

3.4 Regularization
A proper regularization scheme is crucial to the feasibility

of the proposed model. Our model essentially projects users
and items to a joint r-dimensional space. The number of
dimensions determines the representational capacity of the
model. However, a kNN-based model like the one we pro-
pose is known to be ineffective in a high-dimensional space
if the data points spread too widely (i.e., the curse of di-
mensionality) [11]. Therefore, we bound all the user/item
u∗ and v∗ within a unit sphere, i.e.,

‖u∗‖2 ≤ 1 and ‖v∗‖2 ≤ 1,

to ensure the robustness of the learned metric. Note that,
unlike many matrix factorization models, we do not regular-
ize the L2-norm of v∗ or u∗. Regularizing L2-norm creates
a gradient that pulls every object toward the origin. It is
not applicable here because the origin in our metric space
does not have any specific meaning.

Another regularization technique we use is covariance reg-
ularization recently proposed by Cogswell et al. [9] used to
reduce the correlation between activations in a deep neu-
ral network. We found the same principle is also useful in
de-correlating the dimensions in the learned metric. Let yn

denote an object’s latent vector where an object can be a
user or an item, and n indexes the object in a batch of size
N . The covariances between all pairs of dimensions i and j
form a matrix C:

Cij =
1

N

∑
n

(yni − µi)(ynj − µj),

where µi = 1
N

∑
n y

n
i . We define the loss Lc to regularize

the covariances:

Lc =
1

N
(‖C‖f − ‖diag(C)‖22),

where ‖ · ‖f is the Frobenius norm. As covariances can be
seen as a measure of linear redundancy between dimensions,
this loss essentially tries to prevent each dimension from
being redundant and encourages the whole system to more
efficiently utilize the given space.

!"

!#

1 2

1

2

!"

!#

1 2

1

2

Matrix	Factorization Collaborative	Metric	Learning

User Item

$# $%

$"

$#
$%

$"

&# &"
$#
$"
$%

Figure 3: Example latent vector assignments for ma-
trix factorization and CML. The table on the right
shows user/item’s preference relationships.

3.5 Training Procedure
The complete objective function of the proposed model is

as follows:

min
θ,u∗,v∗

Lm + λfLf + λcLc

s.t. ‖u∗‖2 ≤ 1 and ‖v∗‖2 ≤ 1,

where λf and λc are hyperparameters that control the weight
of each loss term. We minimize this constrained objec-
tive function with Mini-Batch Stochastic Gradient Descent
(SGD) and control the learning rating using AdaGrad [10],
as suggested in [28]. Our training procedure is as follows:

1. Sample N positive pairs from S
2. For each pair, sample U negative items and approxi-

mate rankd(i, j) as described in Section 3.2

3. For each pair, keep the negative item k that maximizes
the hinge loss and form a mini-batch of size N .

4. Compute gradients and update parameters with a learn-
ing rate controlled by AdaGrad.

5. Censor the norm of u∗ and v∗ by y′ = y
max(‖y‖,1) .

6. Repeat this procedure until convergence.

3.6 Relation to Other Models
In this subsection, we describe the relation between CML

and other collaborative filtering models. At a high level, the
formulation of CML is similar to that of BPR or other pair-
wise matrix factorization models described in Section 2.3.1.
However, the fact that these matrix factorization models
rely on dot product, which does not satisfy the triangle in-
equality, leads to two important consequences illustrated in
the following.

Figure 3 shows three equally-sized groups of users labeled
as U1, U2 and U3, where U1 liked item v1, U2 liked item
v2, and U3 liked both item v1 and v2. Figure 3 shows a
stable setting for a matrix factorization system. The setting
is stable in a way that the dot product between user/item
vectors= 2 when the user liked the item, otherwise their
dot-product= 0. However, an important observation is that
the dot-product between the item v1 and item v2 is 0 even
if U3 like both of them. This violates the triangle inequality
because the positive relationships between the pairs (U3, v1)

Table 1: Dataset Statistics.
CiteULike BookCX Flickr Medium MovieLens20M EchoNest

Domain Paper Book Photography News Movie Song
Users 7,947 22,816 43,758 61,909 129,797 766,882
Items 25,975 43,765 100,000 80,234 20,709 260,417
Ratings 142,794 623,405 1,372,621 2,047,908 9,939,873 7,261,443
Concentrationa 33.47% 33.10% 13.48% 55.38% 72.52% 65.88%
Features Type Tags Subjects Image Features Tags Genres, Keywords NA
Feature Dim. 10,399 7,923 2,048 2,313 10,399 NA

aConcentration is defined as the percentage of the ratings that concentrate on the Top 5% of the items.

and (U3, v2) are not propagated to (v1, v2). Such a violation
leads to two undesirable consequences:

1. Although the MF model captures the most prominent
factors at its two axises, it does not capture the fine-
grained preferences present in users U3’s feedback.

2. The latent vectors of the MF model do not reliably
capture the item-item or user-user similarity.

Figure 3 also shows a typical solution for the proposed
CML model. Due to the loss function defined in Eq. 1,
CML will pull the item v1 and item v2 relatively close to
each other due to U3’s preferences (in relative to other items
not shown in this figure). At the same time, because CML
maintains the triangle inequality, the user-user and item-
item similarity is also encoded in their euclidean distances
in this joint space.

Previous works also considered different euclidean embed-
ding models for collaborative filtering problems. Khosh-
neshin et al. considered using euclidean embedding for ex-
plicit feedback, which is different from the implicit feedback
problems considered in this work [23]. Koenigstein et al. also
proposed an euclidean embedding model to enable fast sim-
ilar item retrieval, but their model only captures item-item
relationships [24]. Bachrach et al. proposed to transform a
pre-trained dot-product space into an approximate euclidean
embedding that preserves the item order [2]. Our approach
is different as we learn an euclidean metric directly and is
able to outperform the state-of-the-art dot-product models.

4. EXPERIMENTS
We conduct thorough experiments to evaluate CML’s per-

formance. We show CML’s superior accuracy over the state-
of-the-art recommendation algorithms in a wide range of rec-
ommendation domains. We demonstrate CML’s advantage
of utilizing off-the-shelf approximate nearest neighbor search
algorithms to massively speed up the Top-K recommenda-
tion tasks. Finally, we show how the created metric, through
a proper visualization, can uncover users’ fine-grained pref-
erences and the underlying preference spectrum.

4.1 Datasets
We use datasets from 6 different domains with varying

sizes and difficulties to evaluate our model. Table 1 shows
statistics of these datasets. For CiteULike data [47], we use
the tags of the papers as the item features. For BookCX
[54] data, we include users that have more than 5 ratings,
and use the book subjects from OpenLibrary.org as item
features (in a Bag-Of-Word encoding). For Flickr data, we
crawl a user-item graph consisting of users and the photos
they favorite on Flickr. We crawl 100,000 images and use
the image features extracted from Deep Residual Net [15]

as the item features. For Medium data, we use a subset
of news recommendation data collected from Medium.com in
the prior work [18], and use the article tags as the item
features. For MovieLens data [13], we include the ratings
greater or equal to 4 as positive feedback as suggested by
the prior works on implicit feedback [38, 47], and include
the users with more than 10 ratings. We use the genres and
plot keywords from imdb.com as item features for movies.
Finally, for EchoNest data [34], we include the songs a user
listened to for at least 5 times as positive feedback. We do
not use item features for EchoNest data.

4.2 Evaluation Methodology
We divide each user’s ratings into training/validation/test

sets in a 60%/20%/20% split. Users who have less than 5
ratings are only included in the training set. The predicted
ranking is evaluated on recall rates for Top-K recommen-
dations, which are widely-used performance metrics for im-
plicit feedback [46, 47].

4.2.1 Baselines
We compare CML’s recommendation accuracy to 3 collab-

orative filtering baselines described in Section 2.3, including:

• WRMF Weighted Regularized Matrix Factorization
[19, 35], the implicit MF model that uses an additional
case weight to model unobserved interactions.

• BPR Bayesian Personalized Ranking [38] that uses
pairwise log-sigmoid loss.

• WARP Weighted Approximate-Rank Pairwise (WARP)
loss based MF model that produces the state-of-the-art
Top-K recommendation results [28, 53].

We also compared CML with item features (denoted as
CML+F) to 3 state-of-the-art hybrid collaborative filtering
algorithms, including:

• FM Factorization Machine [37], a generalized MF model
that captures interactions between categorical variables
by projecting them into a joint dot-product space. We
only estimate the interactions between (user, item) and
(user, item features) as suggested in [28, 27].

• VBPR Visual BPR [16] partitions rating dimensions
into visual and non-visual factors. The items’ visual
factors are a linear projection of image features. We
replace the linear projection with a more general MLP
model.

• CDL Collaborative Deep Learning [47] learns item off-
set vectors from item features through a denoise au-
toencoder specifically designed for text data. We re-
place the autoencoder with a more general MLP model
applicable to a broader range of features.

Table 2: Recall@50 and Recall@100 on the test set. (# dimensions r = 100) The best performing method
is boldfaced. ∗, ∗∗, ∗ ∗ ∗ indicate p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 based on the Wilcoxon signed rank test
suggested in [41].

WRMF BPR WARP CML
ours vs.

best
FM VBPR CDL CML+F

ours vs.
best

Recall@50
CiteULike 0.2437 0.2489 0.1916 0.2714*** 9.03% 0.1668 0.2807 0.3375** 0.3312 -1.86%
BookCX 0.0910 0.0812 0.0801 0.1037*** 13.95% 0.1016 0.1004 0.0984 0.1147*** 12.89%
Flickr 0.0667 0.0496 0.0576 0.0711*** 6.59% NA 0.0612 0.0679 0.0753*** 10.89%
Medium 0.1457 0.1407 0.1619 0.1730*** 6.41% 0.1298 0.1656 0.1682 0.1780*** 5.82%
MovieLens 0.4317 0.3236 0.4649 0.4665 0.34% 0.4384 0.4521 0.4573 0.4617* 0.96%
EchoNest 0.2285 0.1246 0.2433 0.2460 1.10% NA NA NA NA NA

Recall@100
CiteULike 0.3112 0.3296 0.2526 0.3411*** 3.37% 0.2166 0.3437 0.4173 0.4255** 1.96%
BookCX 0.1286 0.1230 0.1227 0.1436*** 11.66% 0.1440 0.1455 0.1428 0.1712*** 17.66%
Flickr 0.0821 0.0790 0.0797 0.0922*** 12.30% NA 0.0880 0.0909 0.1048*** 15.29%
Medium 0.2112 0.2078 0.2336 0.2480*** 6.16% 0.1900 0.2349 0.2408 0.2531*** 5.10%
MovieLens 0.5649 0.4455 0.5989 0.6022 0.55% 0.5561 0.5712 0.5943 0.5976 0.55%
EchoNest 0.2891 0.1655 0.3021 0.3022 0.00% NA NA NA NA NA

Note that, we train all the above models with the WARP
loss for its superior performance over the BPR loss [53],
and use the same MLP model in CDL, VBPR, and CML
for feature extraction to ensure a fair comparison. We use
LightFM ’s implementation of BPR, WARP and FM [28],
which is a popular CF library used in various competitions.
We implement CML and the rest of the baselines to run on
GPU using Theano [44]. We validate our implementation of
the baselines by comparing the results to that from [16, 46,
12]

All hyperparameters are tuned to perform the best on the
validation set. We set m = 0.5, λf = 1 and λc = 10 except
for MovieLens where λf = 0.5. We use the MLP with a
256-dimensional hidden layer, 50% dropout, and ReLu as
the activation function [5]. For MF baselines, λv and λu
are tuned to their best. The data and implementations are
open-sourced for reproducibility [17]. We evaluate different
latent vector sizes r from r = 10 to r = 100. The general
trend is the same across different vector sizes. For the sake
of space, we only show the results for r = 100.7

4.3 Recommendation Accuracy
Table 2 shows recommendation accuracy in Recall@50 and

Recall@100 for different datasets. We make the following ob-
servations: First, CML (without using item features) signif-
icantly outperforms other pure CF algorithms (the group on
the left) by up to 13.95% in BookCX, Flickr, and Medium
datasets. This is mainly due to the fact that CML’s metric
space can better capture users’ preferences as described in
Section 3.6. We also observe that CML tends to show better
performance in the domains where users’ personal interests
play a major role (e.g., photography, books, etc.). In con-
trast, for MovieLens and EchoNest, where items’ popularity
plays a more important role, CML shows no significant im-
provement. This characteristic is also present in the rating
concentration ratio of these two datasets (Table 1), where
more than 65% of the ratings concentrating on the Top 5%
of the items. In general, models using WARP loss (i.e.,
WARP and our CML) perform much better than BPR,
the only exception is CiteULike, the smallest dataset, where
BPR’s log-sigmoid loss shows better performance.

7VBPR’s user vectors contain both visual and non-visual
parts and are two times larger than that of other models.

Figure 4: Performance of Top-K recommendation
tasks sped up with location-sensitive hashing (LSH).
The triangles at the lower right corners represent
the performance of brute-force search from the three
algorithms.

Secondly, among the hybrid algorithms that utilize item
features, CML+F shows up to 17.66% improvement over
the second best algorithms. We found that CML+F along
with other algorithms that uses MLP as a feature extractor
can more effectively utilize item features than FM models
that uses latent factors to model the item features. This
is particularly evident when item features are noisy (e.g.,
the user-generated tags). On the other hand, compared to
VBPR and CDL, besides the advantages mentioned ear-
lier, the unit-norm-bounded euclidean space of CML+F is
easier for neural networks to approximate as opposed to MF
models’ unbounded dot-product space [30, 43]. The only
exception to this is CiteULike dataset, where CML-F is
slightly outperformed by CDL in recall@50.

4.4 Top-K Recommendations with LSH
An important advantage of CML is its capability of signif-

icantly speeding up Top-K recommendation tasks with off-
the-shelf approximate nearest-neighbor (ANN) algorithms,
such as location-sensitive hashing (LSH). We demon-
strate this advantage with EchoNest data, which is the largest
dataset used in this paper, and with a well-known LSH li-
brary used in the industry, called Annoy [6]. On the other
hand, the Top-K recommendation search problem of matrix

A

B

C

A

B

C

A’

B’

C’

Image features

Learned CML metric

A’

B’

C’

…

…

… … … …

…

Ratings

A’

B’

C’

Figure 5: t-SNE embedding of CML metric. CML not only clusters visually-similar objects together but
also learns the relevance between objects from users’ preferences. For example, CML pulls the images of
birds(A), flowers(B), and natural landscape(C) closer while they are far away in the original feature space
(left).

factorization is equivalent to the maximum-inner-product
search (MIPS) problem, which is known to be tricky to op-
timize due to the dot product’s violation of the triangle in-
equality [42]. In the following, we compare CML to the MF
models sped up with an asymmetric LSH recently proposed
by Shrivastava et al. [42], which is the state-of-the-art LSH
approach for MIPS8.

As a standard LSH benchmarking method [6], we sweep
a large number of parameter settings for each approach, in-
cluding the number of LSH trees, the number of buckets to
search, and the parameters specifically for MIPS search [42],
and only plot the results that are on the accuracy-efficiency
frontier9. As shown in Figure 4, although the CML’s brute-
force search is the slowest, CML benefits considerably from
LSH. For example, CML gains 106x and 86x speedup with
only 2% of reduction in recall@10 and recall@50. It is also
the fastest among the three algorithms given the same ac-
curacy. For example, given recall@10= 0.1, CML is more
than 8x faster than other MF algorithms. MF algorithms
also suffer much larger accuracy reduction for recall@50.

4.5 Metric Visualization
Figure 5 shows the t-SNE embedding of the learned CML

metric for Flickr images [33]. We observe that CML not only
clusters the similar objects together (based on the image
features) but also learns to pull images of relevant objects
closer to reflect users’ preferences. For example, CML pulls
the images of birds, flowers, and natural landscape closer in
the embedding while these images are further away in the
original feature space (shown on the left). In addition, we
also observe an interesting image preference spectrum: from
the embedding’s left to its right, we see images from close-
up human portrait, to indoor scenes, to cityscapes and to
natural landscapes. This spectrum, again, does not exhibit
in the original image feature spaces, and is learned by CML
to reflect users’ fine-grained preferences for photos.

8BPR is omitted from this experiment for its low accuracy.
9The evaluation is done on an AWS g2.2xlarge instance with
Intel Xeon E5-2670 CPU.

5. CONCLUSIONS
In this work, we study the connection between metric

learning and collaborative filtering. We propose collabo-
rative metric learning (CML), which encodes user-item
relationships and user-user/item-item similarity in a joint
metric space, and provide a suite of regularization, feature
fusion and training techniques to make such a model fea-
sible. We demonstrate CML’s superior accuracy over the
state-of-the-art collaborative filtering algorithms in a wide
range of recommendation domains. We demonstrate how
CML’s Top-K recommendation tasks can be massively sped
up by an off-the-shelf, approximate nearest neighbor, search
algorithm, and demonstrate how the visualization of CML
uncovers users’ fine-grained preferences and the underlying
preference spectrum.

By moving from explicit feedback to implicit feedback,
the focus of collaborative filtering has also moved from es-
timating specific set of ratings to capturing users’ relative
preferences for different items [38]. As an alternative to
matrix factorization, our proposed CML algorithm captures
such relationships in a more intuitive way and can better
propagate such information through user-item pairs.

These results suggest the promising new research direction
of applying metric-based algorithms, such as kNN, K-means
and SVMs, to collaborative filtering. While we only ad-
dressed item features in this paper, future work should con-
sider user features, such as those extracted from individual-
usage traces as well [18]. End-to-end metric-based approaches
could integrate such data to improve the model’s represen-
tational capacity and interpretability.

Acknowledgement
We appreciate the anonymous reviewers for their helpful
comments and feedback. This research is partly funded by
AOL-Program for Connected Experiences, a Google Focused
Research Award and further supported by the small data lab
at Cornell Tech which receives funding from UnitedHealth
Group, Google, Pfizer, RWJF, NIH and NSF.

6. REFERENCES
[1] D. Agarwal and B.-C. Chen. flda: matrix factorization through

latent dirichlet allocation. In WSDM’10, pages 91–100. ACM,
2010.

[2] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir,
N. Koenigstein, N. Nice, and U. Paquet. Speeding up the xbox
recommender system using a euclidean transformation for
inner-product spaces. In RecSys’14, pages 257–264. ACM, 2014.

[3] L. Baltrunas and X. Amatriain. Towards time-dependant
recommendation based on implicit feedback. In Workshop on
context-aware recommender systems (CARSâĂŹ09), 2009.

[4] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning
indexes for similarity search. In WWW’05, pages 651–660.
ACM, 2005.

[5] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning.
An MIT Press book in preparation., 2015.

[6] E. Bernhardsson. Annoy. https://github.com/spotify/annoy,
2016.

[7] O. Canévet and F. Fleuret. Efficient sample mining for object
detection. In ACML, 2014.

[8] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification. In
CVPR’05, volume 1, pages 539–546. IEEE, 2005.

[9] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra.
Reducing overfitting in deep networks by decorrelating
representations. ICLR’15, 2015.

[10] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

[11] J. Friedman, T. Hastie, and R. Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics
Springer, Berlin, 2001.

[12] Z. Gantner, S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. Mymedialite: a free recommender system
library. In RecSys’11, pages 305–308. ACM, 2011.

[13] F. M. Harper and J. A. Konstan. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5(4),
Dec. 2015.

[14] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin.
Neural networks and learning machines, volume 3. Pearson
Upper Saddle River, NJ, USA:, 2009.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. arXiv:1512.03385, 2015.

[16] R. He and J. McAuley. Vbpr: visual bayesian personalized
ranking from implicit feedback. arXiv:1510.01784, 2015.

[17] C.-K. Hsieh. Collaborative metric learning.
https://github.com/changun/CollMetric, 2016.

[18] C.-K. Hsieh, L. Yang, H. Wei, M. Naaman, and D. Estrin.
Immersive recommendation: News and event recommendations
using personal digital traces. In WWW’16, pages 51–62.
International World Wide Web Conferences Steering
Committee, 2016.

[19] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In ICDM’08, pages 263–272. Ieee,
2008.

[20] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay.
Accurately interpreting clickthrough data as implicit feedback.
In SIGIR’05, pages 154–161. Acm, 2005.

[21] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q.
Weinberger. Non-linear metric learning. In NIPS’12, pages
2573–2581, 2012.

[22] D. Kelly and J. Teevan. Implicit feedback for inferring user
preference: a bibliography. In ACM SIGIR Forum, volume 37,
pages 18–28. ACM, 2003.

[23] M. Khoshneshin and W. N. Street. Collaborative filtering via
euclidean embedding. In RecSys’10, pages 87–94. ACM, 2010.

[24] N. Koenigstein and Y. Koren. Towards scalable and accurate
item-oriented recommendations. In RecSys’13, pages 419–422.
ACM, 2013.

[25] Y. Koren, R. Bell, C. Volinsky, et al. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37,
2009.

[26] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and
H. Bischof. Large scale metric learning from equivalence
constraints. In CVPR’12, pages 2288–2295. IEEE, 2012.

[27] M. Kula. Metadata embeddings for user and item cold-start
recommendations. arXiv:1507.08439, 2015.

[28] M. Kula. Lightfm. https://github.com/lyst/lightfm, 2016.

[29] B. Kulis. Metric learning: A survey. Foundations and Trends
in Machine Learning, 5(4):287–364, 2012.

[30] B. Kumar, G. Carneiro, and I. Reid. Learning local image
descriptors with deep siamese and triplet convolutional
networks by minimising global loss functions.
arXiv:1512.09272, 2015.

[31] G. Linden, B. Smith, and J. York. Amazon. com
recommendations: Item-to-item collaborative filtering. IEEE
Internet computing, 7(1):76–80, 2003.

[32] W. Liu and I. W. Tsang. Large margin metric learning for
multi-label prediction. In AAAI’15, pages 2800–2806, 2015.

[33] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008.

[34] B. McFee, T. Bertin-Mahieux, D. P. Ellis, and G. R. Lanckriet.
The million song dataset challenge. In WWW’12, pages
909–916. ACM, 2012.

[35] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and
Q. Yang. One-class collaborative filtering. In ICDM’08, pages
502–511. IEEE, 2008.

[36] P. Ram and A. G. Gray. Maximum inner-product search using
cone trees. In KDD’12, pages 931–939. ACM, 2012.

[37] S. Rendle. Factorization machines. In ICDM’10, pages
995–1000. IEEE, 2010.

[38] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from
implicit feedback. In UAI’09, pages 452–461. AUAI Press, 2009.

[39] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor
factorization for personalized tag recommendation. In
WSDM’10, pages 81–90. ACM, 2010.

[40] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: an open architecture for collaborative filtering of
netnews. In CSCW’94, pages 175–186. ACM, 1994.

[41] G. Shani and A. Gunawardana. Evaluating recommendation
systems. In Recommender systems handbook, pages 257–297.
Springer, 2011.

[42] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for sublinear
time maximum inner product search (mips). In NIPS’14, pages
2321–2329, 2014.

[43] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verification.
In CVPR’14, pages 1701–1708, 2014.

[44] Theano Development Team. Theano: A Python framework for
fast computation of mathematical expressions.
arXiv:1605.02688, 2016.

[45] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and
J. Li. Deep learning for content-based image retrieval: A
comprehensive study. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 157–166. ACM,
2014.

[46] C. Wang and D. M. Blei. Collaborative topic modeling for
recommending scientific articles. In KDD’11, pages 448–456.
ACM, 2011.

[47] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep
learning for recommender systems. In KDD’15, pages
1235–1244. ACM, 2015.

[48] J. Wang, H. T. Do, A. Woznica, and A. Kalousis. Metric
learning with multiple kernels. In NIPS’11, pages 1170–1178,
2011.

[49] K. Q. Weinberger and L. K. Saul. Distance metric learning for
large margin nearest neighbor classification. Journal of
Machine Learning Research, 10(Feb):207–244, 2009.

[50] J. Weston, S. Bengio, and N. Usunier. Large scale image
annotation: learning to rank with joint word-image
embeddings. Machine learning, 81(1):21–35, 2010.

[51] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance
metric learning with application to clustering with
side-information. NIPS’03, 15:505–512, 2003.

[52] Z. E. Xu, M. Chen, K. Q. Weinberger, and F. Sha. From sbow
to dcot marginalized encoders for text representation. In
CIKM’12, pages 1879–1884. ACM, 2012.

[53] T. Zhao, J. McAuley, and I. King. Improving latent factor
models via personalized feature projection for one class
recommendation. In CIKM’15, pages 821–830. ACM, 2015.

[54] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic diversification.
In WWW’05, pages 22–32. ACM, 2005.

